Linear parameter varying control of permanent magnet synchronous motor via parameter-dependent lyapunov function for electrical vehicles

This paper presents linear parameter varying (LPV) control of permanent magnet synchronous motor (PMSM), which have nonlinear model in d-q rotating frame, using Linear Matrix Inequality (LMI). PMSM model is rewritten in the LPV form depending on the angular speed of rotor which can be measured or estimated. Parameter-dependent Lyapunov function is used for the LPV control design such that the robust stability is assured for all varying parameters using multi-convexity functions. The proposed LPV structure of speed tracking problem is based on the field oriented control (FOC) in the AC motor control methods. Thus, the proposed LPV controller acquires the control of stator currents in d-q rotating frames for the speed control of PMSM in Electrical Vehicle (EV) presented in the simulation results.

[1]  Scott D. Sudhoff,et al.  Analysis of Electric Machinery and Drive Systems , 1995 .

[2]  S. Bittanti,et al.  Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .

[3]  Yan Li,et al.  PMSM speed controller using switching algorithm of PD and Sliding mode control , 2009, 2009 ICCAS-SICE.

[4]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[5]  Dimitri Peaucelle,et al.  SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[6]  M. Machmoum,et al.  A linear parameter variant H/sub /spl infin// controller design for a permanent magnet synchronous machine , 2005, 2005 European Conference on Power Electronics and Applications.

[7]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[8]  Zhigang Liu,et al.  Switching gain adaptive sliding mode model-following speed control of PMSM , 2010, Proceedings of the 29th Chinese Control Conference.

[9]  Richard M. Stephan,et al.  Vector Control Methods for Induction Machines: An Overview , 1995 .

[10]  Fen Wu,et al.  Switching LPV control of an F-16 aircraft via controller state reset , 2006, IEEE Transactions on Control Systems Technology.

[11]  Jinfeng Liu,et al.  Sliding mode based speed regulating of PMSM MTPA control system for electrical vehicles , 2011, Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology.

[12]  Ricardo Salvador Sánchez Peña,et al.  LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..

[13]  Heeju Choi,et al.  Linear parameter-varying techniques for control of a magnetic bearing system , 2008 .

[14]  P. Blaha,et al.  Linear parameter varying approach to robust control of a permanent magnet synchronous motor , 2011, 2011 15th IEEE International Conference on Intelligent Engineering Systems.

[15]  Masami Saeki,et al.  Synthesis of output feedback gain-scheduling controllers based on descriptor LPV system representation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Ian Postlethwaite,et al.  A linear parameter variant H∞ control design for an induction motor , 2002 .

[17]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[18]  J Witte,et al.  Robust and LPV control of an AMB system , 2010, Proceedings of the 2010 American Control Conference.

[19]  L. del Re,et al.  Gain Scheduled $H_{\infty}$ Control for Air Path Systems of Diesel Engines Using LPV Techniques , 2007, IEEE Transactions on Control Systems Technology.