Generalization of road network for an embedded car navigation system

Automatic map generalization serves to reduce the amount of data to speed up the mapping process or to ensure the legibility of small scale maps. This thesis deals with the task of automatic selection of road networks for the application of visualization and route planning in an embedded car navigation system. Based on an intensive analysis of the embedded system in terms of storage capacity, the display screen and the necessary computing power in real time, two special constraints - connectivity and network density – are introduced. A concept for the semantic-driven path selection for the map display and the optimal route planning is developed and implemented with test data from Germany and China.

[1]  P.J.M. van Oosterom,et al.  The GAP-tree, an approach to "on-the-fly' map generalization of an area partitioning , 1995 .

[2]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[3]  Byron Nakos,et al.  Local length ratio as a measure of critical points detection for line simplification , 2002 .

[4]  Zhilin Li,et al.  Topographic Map Generalization: Association of Road Elimination with Thematic Attributes , 2002 .

[5]  Wanning Peng,et al.  A Dynantic Decision Tree Structure Supporting Urban Road Network Automated Generalization , 1996 .

[6]  Robert B McMaster,et al.  Generalization in Digital Cartography , 2008 .

[7]  Corinne Plazanet,et al.  A Platform for Research in Generalization: Application to Caricature , 1997, GeoInformatica.

[8]  J. Muller,et al.  Fractal and Automated Line Generalization , 1987 .

[9]  W. Mackaness,et al.  The application of agents in automated map generalization , 1999 .

[10]  Zhilin Li,et al.  From phenomena to essence: envisioning the nature of digital map generalisation , 1995 .

[11]  Robert Weibel,et al.  Generalising spatial data and dealing with multiple representations , 1999 .

[12]  William Mackaness,et al.  Computational Processes for Map Generalization , 1999 .

[13]  Anne Ruas,et al.  A Method vor Building Displacement in Automated Map Generalisation , 1998, Int. J. Geogr. Inf. Sci..

[14]  Guillaume Touya,et al.  A Road Network Selection Process Based on Data Enrichment and Structure Detection , 2010, Trans. GIS.

[15]  Liu Yaolin,et al.  Frameworks for generalization constraints and operations based on object-oriented data structure in database generalization , 2001 .

[16]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[17]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 2000, JEAL.

[18]  Dennis de Champeaux,et al.  An Improved Bidirectional Heuristic Search Algorithm , 1975, JACM.

[19]  Robert B McMaster,et al.  Automated Line Generalization , 1987 .

[20]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[21]  Corinne Plazanet Modeling Geometry for Linear Feature Generalization , 2007 .

[22]  Peter Sanders,et al.  Combining hierarchical and goal-directed speed-up techniques for dijkstra's algorithm , 2008, JEAL.

[23]  Gaurav Sinha,et al.  A Framework for Multicriteria Line Generalization to Support Scientific and Engineering Modeling , 2002 .

[24]  Beng Chin Ooi,et al.  Discovery of General Knowledge in Large Spatial Databases , 1993 .

[25]  William Mackaness Generalization of Spatial Databases , 2008 .

[27]  Samsung Lim,et al.  Deriving multi‐scale GEODATA from TOPO‐250K road network Data , 2007 .

[29]  K. S. Shea,et al.  Cartographic generalization in a digital environment: when and how to generalize , 1989 .

[30]  Stuart Thom A Strategy for Collapsing OS Integrated Transport Network™ dual carriageways. , 2005 .

[31]  Geoffrey Edwards,et al.  - 1The Importance of Modelling Pattern and Structure in Automated Map Generalisation , 2002 .

[32]  William A. Mackaness,et al.  Automating the Detection and Simplification of Junctions in Road Networks , 1999, GeoInformatica.

[33]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[34]  Zhilin Li,et al.  An Algorithm for Compressing Digital Contour Data , 1988 .

[35]  Azriel Rosenfeld,et al.  Angle Detection on Digital Curves , 1973, IEEE Transactions on Computers.

[36]  Tinghua Ai,et al.  The evalutation of spatial distribution density in map generalization , 2008 .

[37]  W. Mackaness,et al.  USE OF GRAPH THEORY TO SUPPORT GENERALISATION , 1993 .

[38]  J. D. Whyatt,et al.  Line generalisation by repeated elimination of points , 1993 .

[39]  Prabhakar Ragde,et al.  A bidirectional shortest-path algorithm with good average-case behavior , 1989, Algorithmica.

[40]  Emmanuel Fritsch,et al.  The Importance of Geometric Modeling in Linear Feature Generalization , 1995 .

[41]  Robert B Mc Master,et al.  Knowledge acquisition for cartographic generalization: experimental methods , 1995 .

[42]  Roland T. Chin,et al.  On the Detection of Dominant Points on Digital Curves , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Leo Liberti,et al.  Bidirectional A* Search for Time-Dependent Fast Paths , 2008, WEA.

[44]  S. Thom Conflict Identification and Representation for Roads Based on a Skeleton , 2006 .

[45]  Max J. Egenhofer,et al.  Ontology-driven map generalization , 2005, J. Vis. Lang. Comput..

[46]  Q. S. Guo,et al.  Progressive street networks , 2008, Geoinformatics.

[47]  B. Kvasov Cubic Spline Interpolation , 2000 .

[48]  Dan Lee,et al.  AUTOMATING GENERALIZATION - TOOLS AND MODELS , 2005 .

[49]  D. Richardson,et al.  Integrating Thematic, Geometric, and Topological Information in the Generalization of Road Networks , 1996 .

[50]  A. Saalfeld Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm , 1999 .

[51]  Dorothea Wagner,et al.  Partitioning graphs to speedup Dijkstra's algorithm , 2007, ACM J. Exp. Algorithmics.

[52]  William Mackaness,et al.  A Constraint Based Approach to Human Computer Interaction in Automated Cartography , 1995 .

[53]  Tinghua Ai,et al.  Road selection based on Voronoi diagrams and "strokes" in map generalization , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[54]  Stefan Steiniger,et al.  Snakes: a technique for line smoothing and displacement in map generalisation , 2004 .

[55]  K. S. Shea,et al.  Cartographic generalization in a digital environment: a framework for implementation in a geographic information system , 1988 .

[56]  Corinne Plazanet Measurement , Characterization and Classification for Automated Line Feature Generalization , 1995 .

[57]  Robert Weibel,et al.  Generalization of Spatial Data: Principles and Selected Algorithms , 1996, Algorithmic Foundations of Geographic Information Systems.

[58]  John G. Stell,et al.  Stratified Map Spaces: A Formal Basis for Multi-resolution Spatial Databases , 2001 .

[59]  J. Muller,et al.  The Removal of Spatial Conflicts in Line Generalization , 1990 .

[60]  Robert Weibel,et al.  A CONCEPTUAL FRAMEWORK FOR AUTOMATED GENERALIZATION AND ITS APPLICATION TO GEOLOGIC AND SOIL MAPS , 2005 .

[61]  Zhilin Li Algorithmic Foundation of Multi-Scale Spatial Representation , 2006 .

[62]  R. Thomson,et al.  The ‘ Good Continuation ’ Principle of Perceptual Organization applied to the Generalization of Road Networks , 2002 .