ROMK1-phosphoinositide interaction Structural determinants and specificities for

[1]  Chou-Long Huang Regulation of ROMK trafficking and channel activity , 2001, Current opinion in nephrology and hypertension.

[2]  M. Overduin,et al.  Signaling with phosphoinositides: better than binary. , 2001, Molecular interventions.

[3]  G. Giebisch,et al.  PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values. , 2000, American journal of physiology. Renal physiology.

[4]  C. Nichols,et al.  Structural Determinants of Pip2 Regulation of Inward Rectifier KATP Channels , 2000, The Journal of general physiology.

[5]  J. Falck,et al.  Concise syntheses of L-α-phosphatidyl-D-myo-inositol 3-phosphate (3- PIP), 5-phosphate (5-PIP), and 3,5-bisphosphate (3,5-PIP2) , 2000 .

[6]  Chou-Long Huang,et al.  Phosphatidylinositol 4,5-Bisphosphate and Intracellular pH Regulate the ROMK1 Potassium Channel via Separate but Interrelated Mechanisms* , 2000, The Journal of Biological Chemistry.

[7]  Y. Jan,et al.  Regulation of ATP‐sensitive potassium channel function by protein kinase A‐mediated phosphorylation in transfected HEK293 cells , 2000, The EMBO journal.

[8]  J. Falck,et al.  A Synthesis of L‐α‐Phosphatidyl‐D‐myo‐inositol 4,5‐Bisphosphate (4,5‐PIP2) and Glyceryl Lipid Analogues. , 2000 .

[9]  K. Hinchliffe Intracellular signalling: Is PIP2 a messenger too? , 2000, Current Biology.

[10]  G. Prestwich,et al.  Distinct Specificities of Inwardly Rectifying K+Channels for Phosphoinositides* , 1999, The Journal of Biological Chemistry.

[11]  J. Yang,et al.  Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Liou,et al.  Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Ruppersberg,et al.  pH-dependent Gating of ROMK (Kir1.1) Channels Involves Conformational Changes in Both N and C Termini* , 1998, The Journal of Biological Chemistry.

[14]  C. Nichols,et al.  Membrane phospholipid control of nucleotide sensitivity of KATP channels. , 1998, Science.

[15]  G. Giebisch,et al.  Partially active channels produced by PKA site mutation of the cloned renal K+ channel, ROMK2 (kir1.2). , 1998, American journal of physiology. Renal physiology.

[16]  D. Hilgemann,et al.  Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ , 1998, Nature.

[17]  D. Logothetis,et al.  Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates , 1998 .

[18]  H. Choe,et al.  A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. , 1997, American journal of physiology. Renal physiology.

[19]  J. Rizo,et al.  Concise synthesis of L-α-phosphatidyl-D-myo-inositol 3,4-bisphosphate, an intracellular second messenger , 1997 .

[20]  J. Makielski,et al.  Anionic Phospholipids Activate ATP-sensitive Potassium Channels* , 1997, The Journal of Biological Chemistry.

[21]  D. Hilgemann,et al.  Regulation of Cardiac Na+,Ca2+ Exchange and KATP Potassium Channels by PIP2 , 1996, Science.

[22]  L. Jan,et al.  Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. , 1996, The EMBO journal.

[23]  J. Inazawa,et al.  Reconstitution of IKATP: An Inward Rectifier Subunit Plus the Sulfonylurea Receptor , 1995, Science.

[24]  M Wilmanns,et al.  Structure of the binding site for inositol phosphates in a PH domain. , 1995, The EMBO journal.

[25]  S. Hebert An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK). , 1995, Kidney international.

[26]  P. Hajduk,et al.  Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. , 1995, Biochemistry.

[27]  J. Falck,et al.  Intracellular Mediators: Synthesis of L-.alpha.-Phosphatidyl-D-myo-inositol 3,4,5-Trisphosphate and Glyceryl Ether Analogs , 1995 .

[28]  B. Brenner,et al.  ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. , 1995, The American journal of physiology.

[29]  Julie A. Pitcher,et al.  Pleckstrin Homology Domain-mediated Membrane Association and Activation of the -Adrenergic Receptor Kinase Requires Coordinate Interaction with G Subunits and Lipid(*) , 1995, The Journal of Biological Chemistry.

[30]  E. Schlatter,et al.  pH dependence of K+ conductances of rat cortical collecting duct principal cells , 1994, Pflügers Archiv.

[31]  P. Hajduk,et al.  Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate , 1994, Nature.

[32]  Hao Zhou,et al.  Primary structure and functional properties of an epithelial K channel. , 1994, The American journal of physiology.

[33]  Yoshihiro Kubo,et al.  Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel , 1993, Nature.

[34]  Yoshihiro Kubo,et al.  Primary structure and functional expression of a mouse inward rectifier potassium channel , 1993, Nature.

[35]  W. Jonathan Lederer,et al.  Cloning and expression of an inwardly rectifying ATP-regulated potassium channel , 1993, Nature.

[36]  G. Giebisch,et al.  Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. , 1990, The American journal of physiology.

[37]  S. Muto,et al.  CHAPTER 47 – Regulation of Potassium Excretion , 2008 .

[38]  C. Nichols,et al.  Inward rectifier potassium channels. , 1997, Annual review of physiology.