Leader Election in Anonymous Rings: Franklin Goes Probabilistic

We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size.

[1]  Wan Fokkink,et al.  Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM , 2006, J. Univers. Comput. Sci..

[2]  Michael J. Fischer,et al.  Self-stabilizing population protocols , 2005, TAAS.

[3]  Danny Dolev,et al.  An O(n log n) Unidirectional Distributed Algorithm for Extrema Finding in a Circle , 1982, J. Algorithms.

[4]  Jan Friso Groote,et al.  Linearization in parallel pCRL , 2000, J. Log. Algebraic Methods Program..

[5]  Savi Maharaj,et al.  A Survey of Formal Methods Applied to Leader Election in IEEE 1394 , 2000, J. Univers. Comput. Sci..

[6]  Simona Orzan,et al.  Distributed Analysis with mu CRL: A Compendium of Case Studies , 2007, TACAS.

[7]  Alon Itai,et al.  Symmetry breaking in distributed networks , 1990, Inf. Comput..

[8]  Shing-Tsaan Huang,et al.  Leader election in uniform rings , 1993, TOPL.

[9]  Amos Israeli,et al.  Token management schemes and random walks yield self-stabilizing mutual exclusion , 1990, PODC '90.

[10]  Jaco van de Pol,et al.  State Space Reduction by Proving Confluence , 2002, CAV.

[11]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[12]  Colette Johnen,et al.  Service time optimal self-stabilizing token circulation protocol on anonymous undirectional rings , 2002, 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings..

[13]  Lisa Higham,et al.  Self-Stabilizing Token Circulation on Anonymous Message Passing Rings (Extended Abstract) , 1998 .

[14]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[15]  J. C. Pol A Prover for the muCRL toolset with applications -- version 0.1 , 2001 .

[16]  Michael J. Fischer,et al.  Self-stabilizing Leader Election in Networks of Finite-State Anonymous Agents , 2006, OPODIS.

[17]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[18]  Maria Gradinariu Potop-Butucaru,et al.  Randomized self-stabilizing and space optimal leader election under arbitrary scheduler on rings , 2007, Distributed Computing.

[19]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[20]  Gary L. Peterson,et al.  An O(nlog n) Unidirectional Algorithm for the Circular Extrema Problem , 1982, TOPL.

[21]  Rafail Ostrovsky,et al.  Self-Stabilizing Symmetry Breaking in Constant Space , 2002, SIAM J. Comput..

[22]  Janos Simon,et al.  Deterministic, Constant Space, Self-Stabilizing Leader Election on Uniform Rings , 1995, WDAG.

[23]  W. Randolph Franklin On an improved algorithm for decentralized extrema finding in circular configurations of processors , 1982, CACM.

[24]  Peter J. Stuckey,et al.  Exception analysis for non-strict languages , 2002, ICFP '02.

[25]  Laurent Rosaz,et al.  Self-stabilizing token circulation on asynchronous uniform unidirectional rings , 2000, PODC '00.

[26]  Lisa Higham,et al.  SelfStabilizing Token Circulation on Anonymous Message Passing , 1998, OPODIS.

[27]  Jan Friso Groote,et al.  An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence , 1990, ICALP.

[28]  S. C.C. Blom Partial $\tau$-confluence for efficient state space generation , 2001 .

[29]  Maria Gradinariu Potop-Butucaru,et al.  Memory space requirements for self-stabilizing leader election protocols , 1999, PODC '99.

[30]  Rafail Ostrovsky,et al.  Self-stabilizing algorithms for synchronous unidirectional rings , 1996, SODA '96.

[31]  Dana Angluin,et al.  Local and global properties in networks of processors (Extended Abstract) , 1980, STOC '80.

[32]  Valmir Carneiro Barbosa,et al.  An introduction to distributed algorithms , 1996 .

[33]  Ajoy Kumar Datta,et al.  Self-stabilizing mutual exclusion using unfair distributed scheduler , 2000, Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000.

[34]  Simona Orzan,et al.  Distributed Branching Bisimulation Reduction of State Spaces , 2003, Electron. Notes Theor. Comput. Sci..

[35]  Alon Itai,et al.  Symmetry breaking in distributive networks , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[36]  Leslie Lamport Checking a Multithreaded Algorithm with +CAL , 2006, DISC.

[37]  Faith Ellen,et al.  A Space Optimal, Deterministic, Self-Stabilizing, Leader Election Algorithm for Unidirectional Rings , 2001, DISC.

[38]  Jan Friso Groote,et al.  µCRL: A Toolset for Analysing Algebraic Specifications , 2001, CAV.

[39]  Ted Herman,et al.  Probabilistic Self-Stabilization , 1990, Information Processing Letters.

[40]  Sébastien Tixeuil,et al.  Optimal Randomized Self-stabilizing Mutual Exclusion on Synchronous Rings , 2004, DISC.

[41]  Jan Friso Groote,et al.  Computer assisted manipulation of algebraic process specifications , 2002, SIGP.

[42]  Ernest J. H. Chang,et al.  An improved algorithm for decentralized extrema-finding in circular configurations of processes , 1979, CACM.

[43]  Jan K. Pachl,et al.  Uniform self-stabilizing rings , 1988, TOPL.

[44]  Radu Mateescu,et al.  On-the-fly state space reductions for weak equivalences , 2005, FMICS '05.

[45]  Wan Fokkink,et al.  Simplifying Itai-Rodeh Leader Election for Anonymous Rings , 2005, Electron. Notes Theor. Comput. Sci..

[46]  Alain Kerbrat,et al.  CADP - A Protocol Validation and Verification Toolbox , 1996, CAV.

[47]  Hirotsugu Kakugawa,et al.  Uniform and Self-Stabilizing Fair Mutual Exclusion on Unidirectional Rings under Unfair Distributed Daemon , 2002, J. Parallel Distributed Comput..

[48]  Rafail Ostrovsky,et al.  Self-stabilizing symmetry breaking in constant-space (extended abstract) , 1992, STOC '92.