15.7% Efficient 10‐μm‐Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures

Only ten micrometer thick crystalline silicon solar cells deliver a short-circuit current of 34.5 mA cm(-2) and power conversion efficiency of 15.7%. The record performance for a crystalline silicon solar cell of such thinness is enabled by an advanced light-trapping design incorporating a 2D inverted pyramid photonic crystal and a rear dielectric/reflector stack.

[1]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[2]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[3]  Jianying Zhou,et al.  Deterministic quasi-random nanostructures for photon control , 2013, Nature Communications.

[4]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[5]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[6]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[7]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[8]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[9]  H. Card,et al.  Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits , 1976, IEEE Transactions on Electron Devices.

[10]  D. M. Powell,et al.  Modeling the Cost and Minimum Sustainable Price of Crystalline Silicon Photovoltaic Manufacturing in the United States , 2013, IEEE Journal of Photovoltaics.

[11]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[12]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[13]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[14]  Angelo Bozzola,et al.  How to assess light trapping structures versus a Lambertian Scatterer for solar cells? , 2014, Optics express.

[15]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[16]  Li Qian,et al.  Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber. , 2007, Optics express.

[17]  M. Green,et al.  22.8% efficient silicon solar cell , 1989 .

[18]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[19]  Martin A. Green,et al.  24% efficient silicon solar cells , 1990 .

[20]  Lucio Claudio Andreani,et al.  Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations , 2014 .

[21]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[22]  R. Brendel,et al.  Textured monocrystalline thin‐film Si cells from the porous silicon (PSI) process , 2001 .

[23]  M. Ernst,et al.  Lambertian light trapping in thin crystalline macroporous Si layers , 2014 .

[24]  A. Boukai,et al.  High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. , 2012, Nano letters.

[25]  Young Min Song,et al.  Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. , 2010, Optics letters.

[26]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[27]  E. Yablonovitch Statistical ray optics , 1982 .

[28]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[29]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[30]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[31]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[32]  Lucio Claudio Andreani,et al.  Light trapping in thin-film solar cells with randomly rough and hybrid textures. , 2013, Optics express.

[33]  John A. Rogers,et al.  Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells , 2013 .

[34]  D. Biro,et al.  Optimizing annealing steps for crystalline silicon solar cells with screen printed front side metallization and an oxide‐passivated rear surface with local contacts , 2009 .

[35]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.