Bounded-rank tensors are defined in bounded degree

Matrices of rank at most k are defined by the vanishing of polynomials of degree k+1 in their entries (namely, their ((k+1)×(k+1))-subdeterminants), regardless of the size of the matrix. We prove a qualitative analogue of this statement for tensors of arbitrary dimension, where matrices correspond to two-dimensional tensors. More specifically, we prove that for each k there exists an upper bound d=d(k) such that tensors of border rank at most k are defined by the vanishing of polynomials of degree at most d, regardless of the dimension of the tensor and regardless of its size in each dimension. Our proof involves passing to an infinite-dimensional limit of tensor powers of a vector space, whose elements we dub infinite-dimensional tensors, and exploiting the symmetries of this limit in crucial ways.

[1]  Elizabeth S. Allman,et al.  Phylogenetic ideals and varieties for the general Markov model , 2004, Adv. Appl. Math..

[2]  Shmuel Friedland,et al.  A proof of the set-theoretic version of the salmon conjecture , 2011, 1104.1776.

[3]  Jan Draisma,et al.  Finiteness for the k-factor model and chirality varieties , 2008, 0811.3503.

[4]  J. M. Landsberg,et al.  On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..

[5]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[6]  Seth Sullivant,et al.  Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.

[7]  Andrew Snowden,et al.  Syzygies of Segre embeddings and $\Delta$-modules , 2010, 1006.5248.

[8]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[9]  Luke Oeding,et al.  Toward a Salmon Conjecture , 2010, Exp. Math..

[10]  J. Landsberg,et al.  On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.

[11]  Jan Draisma,et al.  On the ideals of equivariant tree models , 2007, 0712.3230.

[12]  Seth Sullivant,et al.  Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.

[13]  Eyal Kushilevitz,et al.  Partition Arguments in Multiparty Communication Complexity , 2009, ICALP.

[14]  J. M. Landsberg,et al.  P versus NP and geometry , 2009, J. Symb. Comput..

[15]  J. Landsberg The border rank of the multiplication of 2×2 matrices is seven , 2005 .

[16]  Seth Sullivant,et al.  Algebraic Statistics for Computational Biology: The Strand Symmetric Model , 2005 .

[17]  Amelia Taylor,et al.  A Semialgebraic Description of the General Markov Model on Phylogenetic Trees , 2012, SIAM J. Discret. Math..

[18]  V. Strassen Gaussian elimination is not optimal , 1969 .

[19]  Andrew Snowden,et al.  Syzygies of Segre embeddings , 2010 .

[20]  S. Friedland On tensors of border rank l in C mnl , 2010 .

[21]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[22]  D. E Cohen,et al.  On the laws of a metabelian variety , 1967 .

[23]  Andries E. Brouwer,et al.  Equivariant Gröbner bases and the Gaussian two-factor model , 2011, Math. Comput..

[24]  A. Geramita,et al.  Higher secant varieties of the Segre varieties , 2005 .

[25]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[26]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[27]  Marta Casanellas,et al.  Relevant phylogenetic invariants of evolutionary models , 2009, 0912.1957.

[28]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[29]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[30]  Armand Borel Linear Algebraic Groups , 1991 .

[31]  J. M. Landsberg,et al.  Geometry and the complexity of matrix multiplication , 2007, ArXiv.

[32]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[33]  Claudiu Raicu The GSS Conjecture , 2010 .