Bounded-rank tensors are defined in bounded degree
暂无分享,去创建一个
[1] Elizabeth S. Allman,et al. Phylogenetic ideals and varieties for the general Markov model , 2004, Adv. Appl. Math..
[2] Shmuel Friedland,et al. A proof of the set-theoretic version of the salmon conjecture , 2011, 1104.1776.
[3] Jan Draisma,et al. Finiteness for the k-factor model and chirality varieties , 2008, 0811.3503.
[4] J. M. Landsberg,et al. On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..
[5] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[6] Seth Sullivant,et al. Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.
[7] Andrew Snowden,et al. Syzygies of Segre embeddings and $\Delta$-modules , 2010, 1006.5248.
[8] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[9] Luke Oeding,et al. Toward a Salmon Conjecture , 2010, Exp. Math..
[10] J. Landsberg,et al. On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.
[11] Jan Draisma,et al. On the ideals of equivariant tree models , 2007, 0712.3230.
[12] Seth Sullivant,et al. Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.
[13] Eyal Kushilevitz,et al. Partition Arguments in Multiparty Communication Complexity , 2009, ICALP.
[14] J. M. Landsberg,et al. P versus NP and geometry , 2009, J. Symb. Comput..
[15] J. Landsberg. The border rank of the multiplication of 2×2 matrices is seven , 2005 .
[16] Seth Sullivant,et al. Algebraic Statistics for Computational Biology: The Strand Symmetric Model , 2005 .
[17] Amelia Taylor,et al. A Semialgebraic Description of the General Markov Model on Phylogenetic Trees , 2012, SIAM J. Discret. Math..
[18] V. Strassen. Gaussian elimination is not optimal , 1969 .
[19] Andrew Snowden,et al. Syzygies of Segre embeddings , 2010 .
[20] S. Friedland. On tensors of border rank l in C mnl , 2010 .
[21] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[22] D. E Cohen,et al. On the laws of a metabelian variety , 1967 .
[23] Andries E. Brouwer,et al. Equivariant Gröbner bases and the Gaussian two-factor model , 2011, Math. Comput..
[24] A. Geramita,et al. Higher secant varieties of the Segre varieties , 2005 .
[25] Joseph B. Kruskal,et al. The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.
[26] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[27] Marta Casanellas,et al. Relevant phylogenetic invariants of evolutionary models , 2009, 0912.1957.
[28] C. Matias,et al. Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.
[29] Bernd Sturmfels,et al. Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..
[30] Armand Borel. Linear Algebraic Groups , 1991 .
[31] J. M. Landsberg,et al. Geometry and the complexity of matrix multiplication , 2007, ArXiv.
[32] J. M. Landsberg,et al. An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..
[33] Claudiu Raicu. The GSS Conjecture , 2010 .