Mechanical Properties of Individual Nanotubes and Composites

[1]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[2]  R. Gaertner,et al.  Creep behaviour of polymer blends based on epoxy matrix and intractable high Tg thermoplastic , 2004 .

[3]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[4]  W Benoit,et al.  Reinforcement of single-walled carbon nanotube bundles by intertube bridging , 2004, Nature materials.

[5]  R. Smalley,et al.  Single Wall Carbon Nanotube Fibers Extruded from Super-Acid Suspensions: Preferred Orientation, Electrical and Thermal Transport , 2004 .

[6]  Y. Shibutani,et al.  Ideal tensile strength and band gap of single-walled carbon nanotubes , 2003 .

[7]  S. Frankland,et al.  Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli , 2003 .

[8]  P. Richard,et al.  Reinforcement of rubbery epoxy by carbon nanofibres , 2003 .

[9]  N. Bernstein,et al.  Lattice trapping barriers to brittle fracture. , 2003, Physical review letters.

[10]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[11]  K. Shintani,et al.  Atomistic study of strain dependence of Poisson's ratio of single-walled carbon nanotubes , 2003 .

[12]  Huajian Gao,et al.  Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model , 2003 .

[13]  T. Belytschko,et al.  Bond-breaking bifurcation states in carbon nanotube fracture , 2003 .

[14]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[15]  Satish Kumar,et al.  Effect of orientation on the modulus of SWNT films and fibers , 2003 .

[16]  Weizhen Chen,et al.  Tribological application of carbon nanotubes in a metal-based composite coating and composites , 2003 .

[17]  R. Smalley,et al.  Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties , 2003 .

[18]  C. Journet,et al.  Tuning of nanotube mechanical resonances by electric field pulling. , 2002, Physical review letters.

[19]  J. Gale,et al.  Catalysis of nanotube plasticity under tensile strain , 2002 .

[20]  K. Liao,et al.  Nonlinear elastic properties of carbon nanotubes subjected to large axial deformations , 2002 .

[21]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[22]  Charles M. Lieber,et al.  Plastic deformations in mechanically strained single-walled carbon nanotubes , 2002, cond-mat/0210420.

[23]  P. Poulin,et al.  Alignment of Carbon Nanotubes in Macroscopic Fibers , 2002 .

[24]  S. Bonnamy,et al.  High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in-situ formed cobalt nanoparticles. , 2002, Journal of nanoscience and nanotechnology.

[25]  P. Ajayan,et al.  Structural Characterizations of Long Single-Walled Carbon Nanotube Strands , 2002 .

[26]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[27]  P. Poulin,et al.  Improved structure and properties of single-wall carbon nanotube spun fibers , 2002 .

[28]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[29]  R. Superfine,et al.  Torsional response and stiffening of individual multiwalled carbon nanotubes. , 2002, Physical review letters.

[30]  Leiji Zhou,et al.  Electrodeposited nickel composites containing carbon nanotubes , 2002 .

[31]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[32]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[33]  Vasyl Harik,et al.  Mechanics of carbon nanotubes: applicability of the continuum-beam models , 2002 .

[34]  S. Ciraci,et al.  Metal nanoring and tube formation on carbon nanotubes , 2002, cond-mat/0205292.

[35]  T. Chou,et al.  Carbon nanotube/carbon fiber hybrid multiscale composites , 2002 .

[36]  P. Poulin,et al.  Raman resonance and orientational order in fibers of single-wall carbon nanotubes , 2002 .

[37]  Chii-Ruey Lin,et al.  LOW TEMPERATURE GROWTH OF ALIGNED CARBON NANOTUBES IN LARGE AREA , 2002 .

[38]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[39]  Mohan Srinivasarao,et al.  Fibers from polypropylene/nano carbon fiber composites , 2002 .

[40]  D. Srivastava,et al.  Tensile strength of carbon nanotubes under realistic temperature and strain rate , 2002, cond-mat/0202513.

[41]  R. Lévy,et al.  Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods , 2002 .

[42]  Z. C. Tu,et al.  Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number , 2001, cond-mat/0112454.

[43]  M. Heggie,et al.  Adatoms and nanoengineering of carbon , 2001, cond-mat/0112230.

[44]  M. V. Es Polymer-clay nanocomposites: The importance of particle dimensions , 2001 .

[45]  R. Dendievel,et al.  Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions , 2001 .

[46]  G. Gremaud,et al.  Mechanical Spectroscopy Q-1 2001: With Applications to Materials Science , 2001 .

[47]  P. Poulin,et al.  Structural characterization of nanotube fibers by x-ray scattering. , 2001, Journal of nanoscience and nanotechnology.

[48]  P. Ajayan,et al.  Mechanical behavior of polymer and ceramic matrix nanocomposites , 2001 .

[49]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[50]  Mauricio Terrones,et al.  Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols , 2001 .

[51]  Hongjie Dai,et al.  Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction , 2000 .

[52]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[53]  Hans Gommans,et al.  Polarized spectroscopy of aligned single-wall carbon nanotubes , 2000 .

[54]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[55]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[56]  Paul Geerlings,et al.  Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene , 2000 .

[57]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[58]  Shengli Zhang,et al.  Helicity energy of a straight single-wall carbon nanotube , 2000 .

[59]  M. Balkanski,et al.  Elastic properties of crystals of single-walled carbon nanotubes , 2000 .

[60]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[61]  S. Xie,et al.  Carbon-nanotube metal-matrix composites prepared by electroless plating , 2000 .

[62]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[63]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[64]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000, cond-mat/0001082.

[65]  Jean Pierre Pascault,et al.  Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate , 1999 .

[66]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[67]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[68]  Robert C. Haddon,et al.  Nanotube composite carbon fibers , 1999 .

[69]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[70]  Ji Liang,et al.  Fabrication of aluminum-carbon nanotube composites and their electrical properties , 1999 .

[71]  R. Dendievel,et al.  Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers , 1999 .

[72]  J. Cavaillé,et al.  A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions , 1999 .

[73]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[74]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[75]  S. Namilae,et al.  Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension , 1998 .

[76]  D. Sánchez-Portal,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1998, cond-mat/9811363.

[77]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[78]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[79]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[80]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998, cond-mat/9804226.

[81]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[82]  Jianping Lu,et al.  Elastic properties of single and multilayered nanotubes , 1997 .

[83]  J. Conard,et al.  New growing modes for carbon: Modelization of lattice defects, structure of tubules and onions , 1997 .

[84]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[85]  L. David,et al.  The role of anelasticity in high stress mechanical response and physical properties of glassy polymers , 1997 .

[86]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[87]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[88]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[89]  Safran,et al.  Elastic equilibrium of curved thin films. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[90]  R. Landel,et al.  Mechanical Properties of Polymers and Composites , 1993 .

[91]  R. Smalley,et al.  On the energetics of tubular fullerenes , 1993 .

[92]  J. Cavaillé,et al.  A molecular theory for the sub-tg plastic mechanical response of amorphous polymers , 1992 .

[93]  N. Marzari,et al.  Textural and Micromorphological Effects on the Overall Elastic Response of Macroscopically Anisotropic Composites , 1992 .

[94]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[95]  J. Aboudi Mechanics of composite materials - A unified micromechanical approach , 1991 .

[96]  S. Ahmed,et al.  A review of particulate reinforcement theories for polymer composites , 1990 .

[97]  D. H. Everett Basic Principles of Colloid Science , 1988 .

[98]  J. Daniel Latex de particules structurees , 1985 .

[99]  J. Lefebvre,et al.  Plastic deformation of glassy amorphous polymers: influence of strain rate , 1985 .

[100]  G. P. Tandon,et al.  The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites , 1984 .

[101]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[102]  K. Miyasaka,et al.  Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles , 1983 .

[103]  J. Jonas,et al.  Yield and transient effects during the plastic deformation of solid polymers , 1981 .

[104]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[105]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[106]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[107]  A. Argon A theory for the low-temperature plastic deformation of glassy polymers , 1973 .

[108]  J. Kardos,et al.  Moduli of Crystalline Polymers Employing Composite Theory , 1972 .

[109]  I. Ward Review: The yield behaviour of polymers , 1971 .

[110]  A. Peterlin,et al.  Molecular model of drawing polyethylene and polypropylene , 1971 .

[111]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[112]  R. E. Robertson,et al.  Theory for the Plasticity of Glassy Polymers , 1966 .

[113]  J. Roetling Yield stress behaviour of polymethylmethacrylate , 1965 .

[114]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[115]  J. Ferry Viscoelastic properties of polymers , 1961 .

[116]  G. Alers,et al.  ELASTIC CONSTANTS OF SILVER AND GOLD , 1958 .

[117]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[118]  Michaela M. Smetazko,et al.  Supported membrane nanodevices. , 2004, Journal of nanoscience and nanotechnology.

[119]  A. Mukherjee,et al.  Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites , 2003, Nature materials.

[120]  Martyn C. Davies,et al.  Comparison of calibration methods for atomic-force microscopy cantilevers , 2002 .

[121]  N. Turova The chemistry of metal alkoxides , 2002 .

[122]  James M. Tour,et al.  Dissolution of small diameter single-wall carbon nanotubes in organic solvents? , 2001 .

[123]  Thomas J. Pinnavaia,et al.  Polymer-clay nanocomposites , 2000 .

[124]  G. M. Swallowe Mechanical Properties and Testing of Polymers , 1999 .

[125]  E. Giannelis,et al.  Polymer-silicate nanocomposites : Model systems for confined polymers and polymer brushes , 1999 .

[126]  G. M. Swallowe Mechanical properties and testing of polymers : an a-z reference , 1999 .

[127]  J. Perez Physics and Mechanics of Amorphous Polymers , 1998 .

[128]  Mohsen Shaterzadeh Yazdi Etude et modélisation physique et mécanique du comportement viscoélastique et plastique de composites particulaires à matrice polymère , 1997 .

[129]  Emmanuel P. Giannelis,et al.  Polymer Layered Silicate Nanocomposites , 1996 .

[130]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[131]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[132]  G. Canova,et al.  Etude de nouveaux matériaux composites obtenus à partir de latex filmogènes et de whiskers de cellulose : effets de percolation mécanique , 1995 .

[133]  André Zaoui,et al.  n-Layered inclusion-based micromechanical modelling , 1993 .

[134]  Leif A. Carlsson,et al.  Micromechanical materials modeling , 1990 .

[135]  T. Kurauchi,et al.  Nylon 6–Clay Hybrid , 1989 .

[136]  M. Walzak,et al.  Generation of electron accepting surface sites in carbon blacks by peracetic acid oxidation , 1986 .

[137]  C. G'sell,et al.  Plastic deformation of amorphous and semi-crystalline materials , 1982 .

[138]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[139]  R. Batist Internal Friction of Structural Defects in Crystalline Solids , 1972 .

[140]  P. B. Bowden,et al.  The plastic flow of isotropic polymers , 1972 .

[141]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[142]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[143]  C. Zener Elasticity and anelasticity of metals , 1948 .