In & out zooming on time-aware user/tag clusters

The common ground behind most approaches that analyze social tagging systems is addressing the information challenge that emerges from the massive activity of millions of users who interact and share resources and/or metadata online. However, lack of any time-related data in the analysis process implicitly denies much of the dynamic nature of social tagging activity. In this paper we claim that holding a temporal dimension, allows for tracking macroscopic and microscopic users’ interests, detecting emerging trends and recognizing events. To this end, we propose a time-aware co-clustering approach for acquiring semantic and temporal patterns out of the tagging activity. The resulted clusters contain both users and tags of similar patterns over time, and reveal non-obvious or “hidden” relations among users and topics of their common interest. Zoom in & out views serve as visualization methods on different aspects of the clusters’ structure, in order to evaluate the efficiency of the approach.

[1]  Florian Metze,et al.  Detecting trends in social bookmarking systems using a probabilistic generative model and smoothing , 2008, 2008 19th International Conference on Pattern Recognition.

[2]  Ravi Kumar,et al.  Visualizing tags over time , 2006, WWW '06.

[3]  C. Bauckhage,et al.  Analyzing Social Bookmarking Systems : A del . icio . us Cookbook , 2008 .

[4]  Lefteris Angelis,et al.  Gene functional annotation by statistical analysis of biomedical articles , 2007, Int. J. Medical Informatics.

[5]  M. Kulldorff Spatial Scan Statistics: Models, Calculations, and Applications , 1999 .

[6]  Hakim Hacid,et al.  Correlating Time-Related Data Sources with Co-clustering , 2008, WISE.

[7]  Enrico Motta,et al.  Semantically enriching folksonomies with FLOR , 2008 .

[8]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[9]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[10]  Chun Zhang,et al.  Storing and querying ordered XML using a relational database system , 2002, SIGMOD '02.

[11]  James Allan,et al.  Introduction to topic detection and tracking , 2002 .

[12]  Georgia Koutrika,et al.  Fighting Spam on Social Web Sites: A Survey of Approaches and Future Challenges , 2007, IEEE Internet Computing.

[13]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[14]  Myra Spiliopoulou,et al.  Spectral Clustering in Social-Tagging Systems , 2009, WISE.

[15]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[16]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[17]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[18]  James Allan,et al.  Extracting significant time varying features from text , 1999, CIKM '99.

[19]  Grigory Begelman,et al.  Automated Tag Clustering: Improving search and exploration in the tag space , 2006 .

[20]  Mor Naaman,et al.  Towards automatic extraction of event and place semantics from flickr tags , 2007, SIGIR.

[21]  Dimitrios Gunopulos,et al.  Identifying similarities, periodicities and bursts for online search queries , 2004, SIGMOD '04.

[22]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[23]  William R. Hersh,et al.  Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries , 2002 .

[24]  Yiannis Kompatsiaris,et al.  Clustering of Social Tagging System Users: A Topic and Time Based Approach , 2009, WISE.

[25]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[26]  Andreas Hotho,et al.  Trend Detection in Folksonomies , 2006, SAMT.

[27]  Hila Becker,et al.  Learning similarity metrics for event identification in social media , 2010, WSDM '10.

[28]  Yong Yu,et al.  An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations , 2007, ISWC/ASWC.

[29]  Athena Vakali,et al.  Time-Aware Web Users' Clustering , 2008, IEEE Transactions on Knowledge and Data Engineering.

[30]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[31]  Chinatsu Aone,et al.  Fast and effective text mining using linear-time document clustering , 1999, KDD '99.

[32]  Marco Richeldi,et al.  Class-Driven Statistical Discretization of Continuous Attributes (Extended Abstract) , 1995, ECML.

[33]  Yiannis Kompatsiaris,et al.  Co-Clustering Tags and Social Data Sources , 2008, 2008 The Ninth International Conference on Web-Age Information Management.

[34]  Peter Willett,et al.  Readings in information retrieval , 1997 .

[35]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[36]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[37]  Terrell Russell,et al.  cloudalicious: folksonomy over time , 2006, Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '06).

[38]  Daniel Dajun Zeng,et al.  Discovering Trends in Collaborative Tagging Systems , 2008, ISI Workshops.

[39]  Michael K. Ng,et al.  Discretization of Multidimensional Web Data for Informative Dense Regions Discovery , 2004, CIS.

[40]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .