Membrane-proximal external HIV-1 gp41 motif adapted for destabilizing the highly rigid viral envelope.

[1]  Sriram Subramaniam,et al.  Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures , 2011, Proceedings of the National Academy of Sciences.

[2]  P. Schwille,et al.  All-or-none versus graded: single-vesicle analysis reveals lipid composition effects on membrane permeabilization. , 2010, Biophysical journal.

[3]  H. Garoff,et al.  Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure , 2010, Proceedings of the National Academy of Sciences.

[4]  William C Wimley,et al.  Describing the mechanism of antimicrobial peptide action with the interfacial activity model. , 2010, ACS chemical biology.

[5]  D. Tyrrell,et al.  Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses , 2010, Proceedings of the National Academy of Sciences.

[6]  Felix Campelo,et al.  Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions , 2010, PLoS pathogens.

[7]  C. Potrich,et al.  EPR and FTIR studies reveal the importance of highly ordered sterol-enriched membrane domains for ostreolysin activity. , 2010, Biochimica et biophysica acta.

[8]  Robert Damoiseaux,et al.  A broad-spectrum antiviral targeting entry of enveloped viruses , 2010, Proceedings of the National Academy of Sciences.

[9]  A. Ramamoorthy,et al.  Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. , 2010, Biophysical journal.

[10]  F. Wieland,et al.  Probing HIV-1 Membrane Liquid Order by Laurdan Staining Reveals Producer Cell-dependent Differences* , 2009, The Journal of Biological Chemistry.

[11]  A. Ivankin,et al.  Cholesterol-phospholipid interactions: new insights from surface x-ray scattering data. , 2009, Physical review letters.

[12]  G. Melikyan,et al.  Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm , 2008, Retrovirology.

[13]  Ü. Langel,et al.  Cholesterol prevents interaction of the cell‐penetrating peptide transportan with model lipid membranes , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[14]  S. Qian,et al.  Structure of transmembrane pore induced by Bax-derived peptide: Evidence for lipidic pores , 2008, Proceedings of the National Academy of Sciences.

[15]  S. S. Chen,et al.  Identification of the LWYIK Motif Located in the Human Immunodeficiency Virus Type 1 Transmembrane gp41 Protein as a Distinct Determinant for Viral Infection , 2008, Journal of Virology.

[16]  Y. Ishitsuka,et al.  Protegrin interaction with lipid monolayers: Grazing incidence X-ray diffraction and X-ray reflectivity study. , 2008, Soft matter.

[17]  P. Kinnunen,et al.  Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and temporin L. , 2008, Biochimica et biophysica acta.

[18]  R. Epand,et al.  CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. , 2008, Biochimica et biophysica acta.

[19]  E. Hunter,et al.  Importance of the Membrane-Perturbing Properties of the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 gp41 to Viral Fusion , 2008, Journal of Virology.

[20]  E. Hunter,et al.  Role of the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein in Cell-Cell Fusion and Virus Infection , 2008, Journal of Virology.

[21]  Yifan Cheng,et al.  A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies , 2008, Proceedings of the National Academy of Sciences.

[22]  Jamie K. Scott,et al.  The Membrane-Proximal External Region of the Human Immunodeficiency Virus Type 1 Envelope: Dominant Site of Antibody Neutralization and Target for Vaccine Design , 2008, Microbiology and Molecular Biology Reviews.

[23]  V. Brusic,et al.  HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. , 2008, Immunity.

[24]  Annick Thomas,et al.  Hydrophobic substitutions in the first residue of the CRAC segment of the gp41 protein of HIV. , 2008, Biochemistry.

[25]  Nerea Huarte,et al.  Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission , 2008, Biochimica et Biophysica Acta (BBA) - Biomembranes.

[26]  J. Zimmerberg,et al.  Paradoxical lipid dependence of pores formed by the Escherichia coli alpha-hemolysin in planar phospholipid bilayer membranes. , 2006, Biophysical journal.

[27]  A. Pokorny,et al.  Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. , 2006, Biophysical journal.

[28]  Stephen D Fuller,et al.  Cryo-Electron Tomographic Structure of an Immunodeficiency Virus Envelope Complex In Situ , 2006, PLoS pathogens.

[29]  J. Lifson,et al.  Distribution and three-dimensional structure of AIDS virus envelope spikes , 2006, Nature.

[30]  T. McIntosh,et al.  Roles of bilayer material properties in function and distribution of membrane proteins. , 2006, Annual review of biophysics and biomolecular structure.

[31]  Annick Thomas,et al.  Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. , 2006, Biochemistry.

[32]  A. Rowat,et al.  Universal behavior of membranes with sterols. , 2006, Biophysical journal.

[33]  Hans-Georg Kräusslich,et al.  The HIV lipidome: a raft with an unusual composition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Y. Ishitsuka,et al.  Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. , 2006, Biophysical journal.

[35]  P. F. Almeida,et al.  Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. , 2005, Biochemistry.

[36]  T. McIntosh,et al.  Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. , 2005, Biophysical journal.

[37]  Amitabha Chattopadhyay,et al.  Interaction of melittin with membrane cholesterol: a fluorescence approach. , 2004, Biophysical journal.

[38]  Huey W. Huang,et al.  Molecular mechanism of Peptide-induced pores in membranes. , 2004, Physical review letters.

[39]  J. Arrondo,et al.  Structural and functional roles of HIV-1 gp41 pretransmembrane sequence segmentation. , 2003, Biophysical journal.

[40]  L. Arthur,et al.  Cholesterol Depletion of Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus with β-Cyclodextrin Inactivates and Permeabilizes the Virions: Evidence for Virion-Associated Lipid Rafts , 2003, Journal of Virology.

[41]  S. A. Gallo,et al.  The HIV Env-mediated fusion reaction. , 2003, Biochimica et biophysica acta.

[42]  H. Vogel,et al.  The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. , 2001, Biochemistry.

[43]  R. Hodges,et al.  Cholesterol attenuates the interaction of the antimicrobial peptide gramicidin S with phospholipid bilayer membranes. , 2001, Biochimica et biophysica acta.

[44]  E. Hunter,et al.  A Conserved Tryptophan-Rich Motif in the Membrane-Proximal Region of the Human Immunodeficiency Virus Type 1 gp41 Ectodomain Is Important for Env-Mediated Fusion and Virus Infectivity , 1999, Journal of Virology.

[45]  R. Epand,et al.  Relationship of membrane curvature to the formation of pores by magainin 2. , 1998, Biochemistry.

[46]  R. Rand,et al.  The influence of cholesterol on phospholipid membrane curvature and bending elasticity. , 1997, Biophysical journal.

[47]  F. Szoka,et al.  Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. , 1996, Biophysical journal.

[48]  N. Fujii,et al.  Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. , 1995, Biochemistry.

[49]  D Needham,et al.  Elastic deformation and failure of lipid bilayer membranes containing cholesterol. , 1990, Biophysical journal.

[50]  S. White,et al.  Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. , 1997, Methods in enzymology.