Depth of modular invariant rings

It is well-known that the ring of invariants associated to a non-modular representation of a finite group is Cohen-Macaulay and hence has depth equal to the dimension of the representation. For modular representations the ring of invariants usually fails to be Cohen-Macaulay and computing the depth is often very difficult. In this paper1 we obtain a simple formula for the depth of the ring of invariants for a family of modular representations. This family includes all modular representations of cyclic groups. In particular, we obtain an elementary proof of the celebrated theorem of Ellingsrud and Skjelbred [6].

[1]  Bertram Huppert,et al.  Finite Groups III , 1982 .

[2]  Wolfgang Vogel,et al.  Buchsbaum rings and applications , 1986 .

[3]  Gregor Kemper,et al.  Calculating Invariant Rings of Finite Groups over Arbitrary Fields , 1996, J. Symb. Comput..

[4]  Gregor Kemper,et al.  On the Cohen–Macaulay Property of Modular Invariant Rings , 1999 .

[5]  Jean-Pierre Serre Algebraic Groups and Class Fields , 1987 .

[6]  P. Fleischmann Relative Trace Ideals and Cohen-Macaulay Quotients of Modular Invariant Rings , 1999 .

[7]  R. E. Stong,et al.  The depth of rings of invariants over finite fields , 1987 .

[8]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[9]  Larry Smith Homological codimension of modular rings of invariants and the Koszul complex , 1998 .

[10]  J. Lannes,et al.  Depth and the Steenrod algebra , 1997 .

[11]  A. Geramita,et al.  Non Cohen-Macaulay Vector Invariants and a Noether Bound for a Gorenstein Ring of Invariants , 1999, Canadian Mathematical Bulletin.

[12]  Geir Ellingstad,et al.  PROFONDEUR D'ANNEAUX D'INVARIANTS EN CARACTÉRISTIQUE p , 1978 .

[13]  David J. Benson,et al.  Polynomial invariants of finite groups , 1993 .

[14]  Haruhisa Nakajima,et al.  Invariants of finite groups generated by pseudo-reflections in positive characteristic , 1979 .

[15]  D. E. Taylor The geometry of the classical groups , 1992 .

[16]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[17]  Gregor Kemper,et al.  Some Algorithms in Invariant Theory of Finite Groups , 1999 .

[18]  Larry Smith,et al.  Polynomial Invariants of Finite Groups , 1995 .

[19]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .