On the Lagrangian structure of transport equations: the Vlasov-Poisson system

The Vlasov-Poisson system is a classical model in physics used to describe the evolution of particles under their self-consistent electric or gravitational field. The existence of classical solutions is limited to dimensions $d\leq 3$ under strong assumptions on the initial data, while weak solutions are known to exist under milder conditions. However, in the setting of weak solutions it is unclear whether the Eulerian description provided by the equation physically corresponds to a Lagrangian evolution of the particles. In this paper we develop several general tools concerning the Lagrangian structure of transport equations with non-smooth vector fields and we apply these results: (1) to show that weak solutions of Vlasov-Poisson are Lagrangian; (2) to obtain global existence of weak solutions under minimal assumptions on the initial data.

[1]  E. Caglioti,et al.  The Vlasov Equation with Infinite Mass , 2001 .

[2]  B. Perthame,et al.  Regularity and propagation of moments in some nonlinear Vlasov systems , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  G. Loeper Uniqueness of the solution to the Vlasov-Poisson system with bounded density , 2005 .

[4]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[5]  L. Ambrosio,et al.  Existence and Uniqueness of Maximal Regular Flows for Non-smooth Vector Fields , 2014, 1406.3701.

[6]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[7]  B. Perthame,et al.  Time decy, propagarion of low moments and dispersive , 1996 .

[8]  Gianluca Crippa,et al.  Lagrangian flows for vector fields with gradient given by a singular integral , 2012, 1208.6374.

[9]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non-linear vlasov equation II special cases , 1982 .

[10]  Camillo De Lellis,et al.  Estimates and regularity results for the DiPerna-Lions flow , 2008 .

[11]  R. Illner,et al.  An existence theorem for the unmodified Vlasov Equation , 1979 .

[12]  P. Lions,et al.  Solutions globales d'équations du type Vlasov-Poisson , 1988 .

[13]  P. Lions,et al.  R.J. Diperna* Pierre-Louis Lions GLOBAL WEAK SOLUTIONS OF KINETIC EQUATIONS , 2008 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  Benoît Perthame,et al.  Time decay, propagation of low moments and dispersive effects for kinetic equations , 1996 .

[16]  J. Batt,et al.  Global symmetric solutions of the initial value problem of stellar dynamics , 1977 .

[17]  G. Mingione,et al.  The Singular Set of Minima of Integral Functionals , 2006 .

[18]  F. Bouchut,et al.  Lagrangian flows for vector fields with anisotropic regularity , 2014, 1412.2513.

[19]  P. Lions,et al.  Renormalized solutions of some transport equations with partially W1,1 velocities and applications , 2004 .

[20]  P. Lions,et al.  Global weak solutions of Vlasov‐Maxwell systems , 1989 .

[21]  Stephen Wollman,et al.  Global‐in‐time solutions of the two‐dimensional vlasov‐poisson systems , 1980 .

[22]  F. Bouchut,et al.  Équations de transport à coefficient dont le gradient est donné par une intégrale singulière , 2008 .

[23]  The Vlasov–Poisson system with infinite kinetic energy and initial data in Lp(R6)☆ , 2008 .

[24]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[25]  Pierre Degond,et al.  Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .

[26]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non‐linear Vlasov equation I general theory , 1981 .

[27]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[28]  H. Neunzert,et al.  Weak solutions of the initial value problem for the unmodified non‐linear vlasov equation , 1984 .

[29]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[30]  F. Bouchut,et al.  Lagrangian solutions to the Vlasov-Poisson system with L^1 density , 2014, 1412.6358.

[31]  Gerhard Rein,et al.  Chapter 5 - Collisionless Kinetic Equations from Astrophysics – The Vlasov–Poisson System , 2007 .

[32]  Christophe Pallard,et al.  Space Moments of the Vlasov-Poisson System: Propagation and Regularity , 2014, SIAM J. Math. Anal..

[33]  Cité Descartes,et al.  Renormalized solutions of some transport equations with partially W 1,1 velocities and applications , 2004 .

[34]  S. Ukai,et al.  On classical solutions in the large in time of two-dimensional Vlasov's equation , 1978 .

[35]  Jack Schaeffer,et al.  Global existence for the Poisson-Vlasov system with nearly symmetric data , 1987 .

[36]  L. Ambrosio Transport equation and Cauchy problem for BV vector fields , 2004 .

[37]  L. Ambrosio,et al.  Existence, Uniqueness, Stability and Differentiability Properties of the Flow Associated to Weakly Differentiable Vector Fields , 2009 .