Visible-Light-Driven Photochromism of Hexagonal Sodium Tungsten Bronze Nanorods

Single-crystalline sodium tungsten bronze (Na-WO3) nanorods with typical diameters of 10–200 nm and lengths of several micrometers were prepared via hydrothermal synthesis. The as-prepared Na-WO3 nanorods crystallized in a hexagonal structure (space group P6/mmm) with unit cell parameters a = 7.3166(8) A and c = 3.8990(8) A and elongated along the ⟨001⟩ direction. Chemical analyses indicated a stoichiometry of Na0.18WO3.09·0.5H2O, revealing the existence of tunnel Na+ ions and water molecules in the structure, as confirmed also by the vibrational spectroscopic study. The as-prepared Na-WO3 nanorods exhibited a direct-allowed electronic transition with band-gap energy of about 2.5 eV, which allows a visible-light-driven photochromism related to photogenerated carriers and a proton–electron double injection process. The proposed photochromism was discussed in detail by means of Fourier transform infrared spectroscopy. The involved local structural evolutions such as water decomposition and ion intercalation...

[1]  Yufeng Chen,et al.  Synthesis and visible-light photochromism of a new composite based on magadiite containing polytungstate , 2013 .

[2]  A. Yu,et al.  Effect of cation intercalation on the growth of hexagonal WO₃nanorods , 2012 .

[3]  B. Tang,et al.  Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts. , 2010, Chemical communications.

[4]  P. P. González-Borrero,et al.  Optical band-gap determination of nanostructured WO3 film , 2010 .

[5]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[6]  V. Luca,et al.  Microcrystalline hexagonal tungsten bronze. 2. Dehydration dynamics. , 2009, Inorganic chemistry.

[7]  Mark E. Smith,et al.  Microcrystalline hexagonal tungsten bronze. 1. Basis of ion exchange selectivity for cesium and strontium. , 2009, Inorganic chemistry.

[8]  Jinmin Wang,et al.  Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte , 2009 .

[9]  Jun Lin,et al.  One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties , 2009 .

[10]  M. Miyauchi,et al.  A novel visible-light-driven photochromic material with high-reversibility: tungsten oxide-based organic-inorganic hybrid microflowers. , 2009, Chemical communications.

[11]  E. Schubert,et al.  Polaron and Phonon Properties in Proton Intercalated Amorphous Tungsten Oxide Thin Films , 2008 .

[12]  Jinmin Wang,et al.  Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods , 2008 .

[13]  T. Gao,et al.  Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers , 2008 .

[14]  Kazunori Takada,et al.  Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: synthesis, characterization, and photochromic properties. , 2008, ACS nano.

[15]  P. Bordet,et al.  Superconductivity in the tungsten bronze Rb{sub x}WO{sub 3} (0.20{<=}x{<=}0.33) in connection with its structure, electronic density of states, and phonon density of states , 2007 .

[16]  J. Grunwaldt,et al.  Morphological and Kinetic Studies on Hexagonal Tungstates , 2007 .

[17]  J. Yao,et al.  Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. , 2006, The journal of physical chemistry. B.

[18]  J. Yao,et al.  A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires. , 2006, Chemistry.

[19]  T. Gao,et al.  Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures. , 2004, Chemical communications.

[20]  V. Luca,et al.  Ion-Exchange Properties of Microporous Tungstates , 2004 .

[21]  Li Cao,et al.  Photochromism and Size Effect of WO3 and WO3−TiO2 Aqueous Sol , 2003 .

[22]  C. Balázsi,et al.  Long-term behaviour of tungsten oxide hydrate gels in an alkali containing aqueous environment , 2003 .

[23]  T. He,et al.  Photochromism of WO3 colloids combined with TiO2 nanoparticles , 2002 .

[24]  T. He,et al.  Improved photochromism of WO3 thin films by addition of Au nanoparticles , 2002 .

[25]  J. Purans,et al.  XAS, XRD, AFM and Raman studies of nickel tungstate electrochromic thin films , 2001 .

[26]  Yongfeng Lu,et al.  Laser coloration and bleaching of amorphous WO3 thin film , 2000 .

[27]  A. Gavrilyuk Photochromism in WO3 thin films , 1999 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  Georg Kresse,et al.  ANOMALOUS BEHAVIOR OF THE SEMICONDUCTING GAP IN WO3 FROM FIRST-PRINCIPLES CALCULATIONS , 1999 .

[30]  Max Shtein,et al.  Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures , 1999 .

[31]  S. K. Deb,et al.  Electrochromic mechanism in a-WO3−y thin films , 1999 .

[32]  Robert J. Davis,et al.  Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves , 1998 .

[33]  N. Kumagai Synthesis of hexagonal form of tungsten trioxide and electrochemical lithium insertion into the trioxide , 1996 .

[34]  P. Leiderer,et al.  Photochromic coloration of WO3 with visible light , 1996 .

[35]  M. Farkas-Jahnke,et al.  A reinvestigation of the preparation of tungsten oxide hydrate WO3, 1/3H2O , 1995 .

[36]  R. Weber Effect of Local Structure on the UV-Visible Absorption Edges of Molybdenum Oxide Clusters and Supported Molybdenum Oxides , 1995 .

[37]  L. Bartha,et al.  Chemistry of tungsten oxide bronzes , 1995 .

[38]  R. Tilley The crystal chemistry of the higher tungsten oxides , 1995 .

[39]  G. Bader,et al.  Study of lithium intercalation into tungsten oxide films prepared by different methods , 1994 .

[40]  G. Onori,et al.  IR investigations of water structure in aerosol OT reverse micellar aggregates , 1993 .

[41]  M. Whittingham,et al.  Open structure tungstates : synthesis, reactivity and ionic mobility , 1992 .

[42]  M. Whittingham,et al.  Rietveld analysis of sodium tungstate hydrate NaxWO3+x/2.cntdot.yH2O, which has the hexagonal tungsten bronze structure , 1992 .

[43]  J. Morales,et al.  Ion exchange of potassium hexatungstate (K0.30WO3.15) by protons , 1991 .

[44]  M. Whittingham,et al.  Hydrothermal synthesis of sodium tungstates , 1990 .

[45]  Bernard Desbat,et al.  Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates , 1987 .

[46]  E. Gulari,et al.  FTIR spectroscopy of microemulsion structure , 1986 .

[47]  H. Krause,et al.  Investigation of superlattices in KxWO3 in relation to electric transport properties , 1985 .

[48]  C. Lampert,et al.  Electrochromic materials and devices for energy-efficient windows. [161 references] , 1984 .

[49]  G. Shirane,et al.  Evidence of structural phase transitions in superconducting Rb x W O 3 , 1982 .

[50]  E. Flynn Light-scattering studies of soft external lattice modes in metallic Na_{x}WO_{3} , 1980 .

[51]  R. Powell,et al.  Luminescence of calcium tungstate crystals , 1974 .

[52]  J. P. Remeika,et al.  Superconductivity in hexagonal tungsten bronzes , 1967 .

[53]  B. Matthias,et al.  Superconductivity of the alkali tungsten bronzes , 1965 .

[54]  B. Matthias,et al.  SUPERCONDUCTIVITY OF SODIUM TUNGSTEN BRONZES , 1964 .