THE MID-INFRARED EVOLUTION OF THE FU ORIONIS DISK

We present new SOFIA-FORCAST observations obtained in Feburary 2016 of the archetypal outbursting low mass young stellar object FU Orionis, and compare the continuum, solid state, and gas properties with mid-IR data obtained at the same wavelengths in 2004 with Spitzer-IRS. In this study, we conduct the first mid-IR spectroscopic comparison of an FUor over a long time period. Over a 12 year period, UBVR monitoring indicates that FU Orionis has continued its steady decrease in overall brightness by ~ 14%. We find that this decrease in luminosity occurs only at wavelengths < 20 microns. In particular, the continuum short ward of the silicate emission complex at 10 microns exhibits a ~ 12% (~ 3 sigma) drop in flux density, but no apparent change in slope; both the Spitzer and SOFIA spectra are consistent with a 7200 K blackbody. Additionally, the detection of water absorption is consistent with the Spitzer spectrum. The silicate emission feature at 10 microns continues to be consistent with unprocessed grains, unchanged over 12 years. We conclude that either the accretion rate in FU Orionis has decreased by ~ 12-14% over this time baseline, or that the inner disk has cooled, but the accretion disk remains in a superheated state outside of the innermost region.

[1]  L. Hartmann,et al.  The FU Orionis Phenomenon , 1996 .

[2]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[3]  Flickering in FU Orionis , 1999, astro-ph/9910431.

[4]  The Early ALMA View of the FU Ori Outburst System , 2015, 1509.02543.

[5]  Geoffrey A. Blake,et al.  CO ROVIBRATIONAL EMISSION AS A PROBE OF INNER DISK STRUCTURE , 2011, 1109.4579.

[6]  L. Hartmann,et al.  On the nature of FU Orionis objects , 1985 .

[7]  M. Livio,et al.  Dead Zones around Young Stellar Objects: FU Orionis Outbursts and Transition Discs , 2012, 1204.2959.

[8]  J. Mathis Interstellar dust and extinction , 1987 .

[9]  Erin C. Smith,et al.  EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY , 2012, 1205.0791.

[10]  Zhaohuan Zhu,et al.  NONSTEADY ACCRETION IN PROTOSTARS , 2008, 0811.1762.

[11]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES , 2011, 1108.3507.

[12]  Mark R. Morris,et al.  HIGH-PRECISION C17O, C18O, AND C16O MEASUREMENTS IN YOUNG STELLAR OBJECTS: ANALOGUES FOR CO SELF-SHIELDING IN THE EARLY SOLAR SYSTEM , 2009, 0906.1024.

[13]  Zhaohuan Zhu,et al.  On Rapid Disk Accretion and Initial Conditions in Protostellar Evolution , 2011, 1106.3343.

[14]  M. Ireland,et al.  TESTING THE BINARY TRIGGER HYPOTHESIS IN FUors , 2016, 1605.03270.

[15]  Scott J. Kenyon,et al.  Accretion disk models for FU orionis and V1057 Cygni: detailed comparisons between observations and theory , 1988 .

[16]  A. V. Koldoba,et al.  Disk-Magnetosphere Interaction and Outflows: Conical Winds and Axial Jets , 2009, 0901.3858.

[17]  K. Rice,et al.  Protostars and Planets V , 2005 .

[18]  Zhaohuan Zhu,et al.  LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. I. OUTBURSTS , 2010, 1003.1759.

[19]  D. Ebel,et al.  Protoplanetary dust porosity and FU Orionis outbursts: Solving the mystery of Earth’s missing volatiles , 2014, 1404.3995.

[20]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[21]  B. Reipurth,et al.  Evolution of the Fu Orionis Object BBW 76 , 2002 .

[22]  Jonathan P. Williams,et al.  Imaging the water snow-line during a protostellar outburst , 2016, Nature.

[23]  M. Meyer,et al.  DEPLETION OF MOLECULAR GAS BY AN ACCRETION OUTBURST IN A PROTOPLANETARY DISK , 2014, 1412.1824.

[24]  C. Aspin,et al.  The FU Orionis Binary System and the Formation of Close Binaries , 2004 .

[25]  Paul V. Johnson,et al.  VizieR Online Data Catalog: H 2 , D 2 , and HD c 3 Π u; , 2017 .

[26]  D. Lin,et al.  The FU Orionis Outburst as a Thermal Accretion Event , 1995 .

[27]  U. Michigan,et al.  The Hot Inner Disk of FU Orionis , 2007, 0707.3429.

[28]  Gautam Vasisht,et al.  CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY , 2012, 1211.6741.

[29]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[30]  George H. Herbig,et al.  Eruptive phenomena in early stellar evolution. , 1977 .

[31]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[32]  S. Quanz,et al.  Evolution of Dust and Ice Features around FU Orionis Objects , 2007, 0706.3593.

[33]  S. Basu,et al.  VARIABLE PROTOSTELLAR ACCRETION WITH EPISODIC BURSTS , 2015, 1503.07888.

[34]  FU Orionis: A Binary Star? , 2003, astro-ph/0311606.

[35]  Th. Henning,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Episodic Formation of Cometary Material in the Outburst of a Young Sun-like Star Protoplanetary Disk Structures in Ophiuchus , 2022 .

[36]  J. Surace,et al.  Absolute photometric calibration of IRAC: lessons learned using nine years of flight data , 2012, Other Conferences.

[37]  N. Evans,et al.  CO2 ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY , 2012, 1208.5797.

[38]  G. Vasisht,et al.  Keck interferometer observations of FU Orionis objects , 2005 .

[39]  Zhaohuan Zhu,et al.  TWO-DIMENSIONAL SIMULATIONS OF FU ORIONIS DISK OUTBURSTS , 2009, 0906.1595.

[41]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[42]  K. Pontoppidan,et al.  ANOMALOUS CO2 ICE TOWARD HOPS-68: A TRACER OF PROTOSTELLAR FEEDBACK , 2013, 1302.3883.

[43]  T. V. van Kempen,et al.  AN ANALYSIS OF THE ENVIRONMENTS OF FU ORIONIS OBJECTS WITH HERSCHEL , 2013, 1306.0666.

[44]  J. Augereau,et al.  C2D Spitzer-IRS spectra of disks around T Tauri stars IV Crystalline silicates , 2009, 0908.4153.

[45]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[46]  Gregory J. Herczeg,et al.  CONTINUUM VARIABILITY OF DEEPLY EMBEDDED PROTOSTARS AS A PROBE OF ENVELOPE STRUCTURE , 2013, 1301.7341.

[47]  Accretion Disks around Young Objects. II. Tests of Well-mixed Models with ISM Dust , 1999, astro-ph/9907330.

[48]  W. Vacca,et al.  FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: THE FORCAST MID-INFRARED CAMERA , 2012, 1202.5021.

[49]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES. II. HIGH-RESOLUTION OBSERVATIONS , 2011, 1108.3507.

[50]  I. Bonnell,et al.  A binary origin for FU Orionis stars , 1992 .

[51]  E. F. Dishoeck,et al.  Radiative Transfer Models of Emission and Absorption in the H2O 6 Micron Vibration-Rotation Band toward Orion-BN-KL , 1998 .

[52]  Joseph D. Adams,et al.  Data Reduction and Early Science Calibration for FORCAST, A Mid-Infrared Camera for SOFIA , 2013 .

[53]  Crystalline Silicates and Dust Processing in the Protoplanetary Disks of the Taurus Young Cluster , 2007, 0704.1518.