Nonsymmetric Search Directions for Semidefinite Programming

Two nonsymmetric search directions for semidefinite programming, the XZ and ZX search directions, are proposed. They are derived from a nonsymmetric formulation of the semidefinite programming problem. The XZ direction corresponds to the direct linearization of the central path equation $XZ = \nu I,$ while the ZX direction corresponds to $ZX = \nu I$. The XZ and ZX directions are well defined if both X and Z are positive definite matrices, where X may be nonsymmetric. We present an algorithm using the XZ and ZX directions alternately following the Mehrotra predictor-corrector framework. Numerical results show that the XZ/ZX algorithm, in many cases, requires less CPU time than the XZ+ZX method of Alizadeh, Overton, and Haeberly [SIAM J. Optim., 8 (1998), pp. 746--768] while achieving similar accuracy.

[1]  R. Vanderbei,et al.  An Interior-point Method for Semideenite Programming an Interior-point Method for Semideenite Programming , 1994 .

[2]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[3]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[4]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[5]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[6]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[7]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[8]  Kim-Chuan Toh Some New Search Directions for Primal-Dual Interior Point Methods in Semidefinite Programming , 2000, SIAM J. Optim..

[9]  R. C. Monteiro,et al.  Implementation of Primal-Dual Methods for Semidefinite Programming Based on Monteiro and Tsuchiya Ne , 1997 .

[10]  Takashi Tsuchiya,et al.  Polynomiality of primal-dual algorithms for semidefinite linear complementarity problems based on the Kojima-Shindoh-Hara family of directions , 1999, Math. Program..

[11]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[12]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[13]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..