Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control

In this study, the actuator load force of a nanopositioning stage is utilized as a feedback variable to achieve both tracking and damping. The transfer function from the applied actuator voltage to the measured load force exhibits a zero-pole ordering that greatly simplifies the design and implementation of a tracking and damping controller. Exceptional tracking and damping performance can be achieved with a simple integral controller. Other outstanding characteristics include guaranteed stability and insensitivity to changes in resonance frequency. Experimental results on a high-speed nanopositioner demonstrate an increase in the closed-loop bandwidth from 210 Hz (with an integral controller) to 2.07 kHz (with a force-feedback control). Gain margin is simultaneously improved from 5 dB to infinity.

[1]  Lining Sun,et al.  An Integrated Parallel Micromanipulator with Flexure Hinges for Optical Fiber Alignment , 2007, 2007 International Conference on Mechatronics and Automation.

[2]  Ampere A. Tseng,et al.  Nanofabrication: Fundamentals and Applications , 2008 .

[3]  S. Bashash,et al.  Robust Adaptive Control of Coupled Parallel Piezo-Flexural Nanopositioning Stages , 2009, IEEE/ASME Transactions on Mechatronics.

[4]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[5]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, CDC 2005.

[6]  T. P. Chen,et al.  Recent developments in tip-based nanofabrication and its roadmap. , 2008, Journal of nanoscience and nanotechnology.

[7]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[8]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[9]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[10]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1990 .

[11]  John T. Wen,et al.  High Performance Motion Tracking Control for Electronic Manufacturing , 2007 .

[12]  E. Meyer,et al.  Scanning Probe Microscopy , 2021, Graduate Texts in Physics.

[13]  André Preumont,et al.  Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems , 2006 .

[14]  A. Preumont,et al.  The damping of a truss structure with a piezoelectric transducer , 2008 .

[15]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[16]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[17]  André Preumont,et al.  Active damping by a local force feedback with piezoelectric actuators , 1991 .

[18]  S. O. Reza Moheimani,et al.  Sensor fusion for improved control of piezoelectric tube scanners , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[19]  Yang Li,et al.  Feedforward control of a piezoelectric flexure stage for AFM , 2008, 2008 American Control Conference.

[20]  T. Ando,et al.  High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work , 2005 .

[21]  Daniel Y. Abramovitch,et al.  Semi‐automatic tuning of PID gains for atomic force microscopes , 2009 .

[22]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[23]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[24]  Bijan Shirinzadeh,et al.  Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation , 2008, IEEE Transactions on Control Systems Technology.

[25]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[26]  Qingze Zou,et al.  Model-less inversion-based iterative control for output tracking: Piezo actuator example , 2008, 2008 American Control Conference.

[27]  David S. Nyce Linear position sensors , 2003 .

[28]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[29]  Antoine Ferreira,et al.  Virtual reality and haptics for nanorobotics , 2006, IEEE Robotics & Automation Magazine.

[30]  S. O. R. Moheimani,et al.  Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms , 2008 .

[31]  W Q Liu,et al.  The influence of preamplifiers on the piezoelectric sensor's dynamic property. , 2007, The Review of scientific instruments.

[32]  Sumeet S Aphale,et al.  A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages , 2010, IEEE Transactions on Nanotechnology.

[33]  S. O. Reza Moheimani,et al.  Optimization and implementation of multimode piezoelectric shunt damping systems , 2002 .

[34]  Santosh Devasia,et al.  Should model-based inverse inputs be used as feedforward under plant uncertainty? , 2002, IEEE Trans. Autom. Control..

[35]  Daniel Y. Abramovitch,et al.  A comparison of control architectures for atomic force microscopes , 2009 .

[36]  David S. Nyce,et al.  Linear position sensors : theory and application , 2004 .

[37]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[38]  Ernst Meyer,et al.  Scanning Probe Microscopy: The Lab on a Tip , 2021 .

[39]  Mervyn J Miles,et al.  A mechanical microscope: High speed atomic force microscopy , 2005 .

[40]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[41]  Andrew J. Fleming,et al.  Optimal Periodic Trajectories for Band-Limited Systems , 2009, IEEE Transactions on Control Systems Technology.

[42]  S. O. Reza Moheimani,et al.  A Self Servo Writing Scheme for a MEMS Storage Device with Sub-nanometer Precision , 2008 .

[43]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[44]  M. J. Rost,et al.  Scanning probe microscopes go video rate and beyond , 2005 .

[45]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[46]  S.O.R. Moheimani,et al.  Achieving Subnanometer Precision in a MEMS-Based Storage Device During Self-Servo Write Process , 2008, IEEE Transactions on Nanotechnology.