Concurrency in Interaction Nets and Graph Rewriting

In this work, we study concurrency in non-deterministic extensions of Lafont's interaction nets (a graphical language for functional calculus). These extensions are essentially of three types: multiruled, with multiports and multiwired. They can be combined creating thus seven types of concurrent interaction nets. A first task is to determine a good structural operational semantics to be able to compare the behaviors of these extensions. Based on a known technique in graph rewriting - double pushout with borrowed contexts - we define a method of labeling transitions using derivation rules in the style of process calculi, usual paradigm for modeling concurrency. Moreover, we define an observational semantics based on a parametric notion of barbs, that allows us to give a precise notion of translation between systems. We consider an extensions is more expressive than another if all languages from the second one can be translated into a language of the first one. This allows us to classify the concurrent interaction nets systems into three layers. From the strongest to the weakest: nets with multiport cells, nets with multiwires and finally multiruled nets. Using this, we build a universal language for concurrent interaction nets, which study enlightens us on the fundamental bricks of concurrency.

[1]  Daniele Gorla Towards a unified approach to encodability and separation results for process calculi , 2010, Inf. Comput..

[2]  Roberto Bruni,et al.  A Graph Syntax for Processes and Services , 2009, WS-FM.

[3]  Damiano Mazza Interaction nets : semantics and concurrent extensions , 2006 .

[4]  Fabio Gadducci,et al.  Term Graph Rewriting for the pi-Calculus , 2003, APLAS.

[5]  Robin Milner,et al.  Deriving Bisimulation Congruences for Reactive Systems , 2000, CONCUR.

[6]  Fabio Gadducci,et al.  Synthesising CCS bisimulation using graph rewriting , 2009, Inf. Comput..

[7]  Fabio Gadducci,et al.  The tile model , 2000, Proof, Language, and Interaction.

[8]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and the asynchronous π-calculus , 1998, POPL '97.

[9]  Jan Friso Groote,et al.  Structured Operational Semantics and Bisimulation as a Congruence , 1992, Inf. Comput..

[10]  R. Banach The Algebraic Theory of Interaction Nets , 2007 .

[11]  Cosimo Laneve,et al.  Graphs for Core Molecular Biology , 2003, CMSB.

[12]  Vladimiro Sassone,et al.  Deriving Bisimulation Congruences: 2-Categories vs. Precategories , 2003 .

[13]  Vladimir Alexiev,et al.  Non-deterministic interaction nets , 1999 .

[14]  Roberto Bruni,et al.  Deriving Weak Bisimulation Congruences from Reduction Systems , 2005, CONCUR.

[15]  Thomas Ehrhard,et al.  Differential Interaction Nets , 2005, WoLLIC.

[16]  Yves Lafont,et al.  Interaction nets , 1989, POPL '90.

[17]  Davide Sangiorgi Internal Mobility and Agent-Passing Calculi , 1995, ICALP.

[18]  Abteilung Für Informatik Und,et al.  Composition and Decomposition of DPO Transformations with Borrowed Context , 2006 .

[19]  Reiko Heckel,et al.  Graphical Operational Semantics , 2000, ICALP Satellite Workshops.

[20]  Yves Lafont Interaction Combinators , 1997, Inf. Comput..

[21]  Hartmut Ehrig,et al.  Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts , 2006, Mathematical Structures in Computer Science.

[22]  Benjamin C. Pierce,et al.  Decoding Choice Encodings , 1999 .

[23]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[24]  Thomas Ehrhard,et al.  Interpreting a Finitary Pi-calculus in Differential Interaction Nets , 2007, CONCUR.

[25]  Joachim Parrow,et al.  Expressiveness of Process Algebras , 2008, LIX.

[26]  Nobuko Yoshida Graph Notation for Concurrent Combinators , 1994, Theory and Practice of Parallel Programming.

[27]  Arend Rensink,et al.  Compositionality in Graph Transformation , 2010, ICALP.

[28]  Barbara König,et al.  Structured Operational Semantics for Graph Rewriting , 2012, Sci. Ann. Comput. Sci..

[29]  Ian Mackie,et al.  A Calculus for Interaction Nets , 1999, PPDP.

[30]  Robin Milner Pi-Nets: A Graphical Form of pi-Calculus , 1994, ESOP.

[31]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[32]  Cosimo Laneve,et al.  Solos in Concert , 1999, ICALP.

[33]  Ursula Goltz,et al.  Equivalence Notions for Concurrent Systems and Refinement of Actions (Extended Abstract) , 1989, MFCS.

[34]  Ugo Montanari,et al.  Synchronized Hyperedge replacement with name mobility: A graphical calculus for mobile Systems , 2001 .

[35]  Marc de Falco An Explicit Framework for Interaction Nets , 2010 .

[36]  Maribel Fernández,et al.  Interaction Nets with McCarthy's amb , 2002, EXPRESS.

[37]  Simon J. Gay Combinators for Interaction Nets , 1994, Theory and Formal Methods.

[38]  Kohei Honda,et al.  Elementary structures in process theory (1): Sets with renaming , 2000, Mathematical Structures in Computer Science.

[39]  Fabio Gadducci,et al.  Labelled Transitions for Mobile Ambients (As Synthesized via a Graphical Encoding) , 2008, EXPRESS.

[40]  Sylvain Lippi Théorie et pratique des réseaux d'interaction , 2001 .

[41]  Emmanuel Beffara,et al.  Concurrent Nets: A Study of Prefixing in Process Calculi , 2005, EXPRESS.

[42]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[43]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Graph Transformation , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[44]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[45]  Vladimiro Sassone,et al.  A Congruence for Petri Nets , 2005, PNGT@ICGT.

[46]  Damiano Mazza,et al.  Multiport Interaction Nets and Concurrency , 2005, CONCUR.

[47]  Julian Rathke,et al.  Semantic Barbs and Biorthogonality , 2007, FoSSaCS.

[48]  Robin Milner,et al.  Pure bigraphs: Structure and dynamics , 2006, Inf. Comput..

[49]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[50]  Joachim Parrow The Expressive Power of Simple Parallelism , 1989, PARLE.

[51]  Denis Béchet Universal Interaction Systems with Only Two Agents , 2001, RTA.