Modified affinity propagation clustering

Affinity propagation clustering is an efficient clustering technique that does not require prior knowledge of the number of clusters. However, it sets the input preferences without considering data set distribution and competition in the former iteration is ignored when updating messages passing between data points. This paper presents a modified affinity propagation algorithm. Firstly, preference for each data point to serve as an exemplar is computed self-adaptively based on data set distribution; then encouragement and chastisement mechanism is introduced for updating message of availability. Experimental results on standard data sets and synthetic data sets demonstrate feasibility and effectiveness of the proposed algorithm.

[1]  S. Dudoit,et al.  A prediction-based resampling method for estimating the number of clusters in a dataset , 2002, Genome Biology.

[2]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[3]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[4]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[6]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[7]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[8]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[9]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[10]  Peter Meer,et al.  Semi-Supervised Kernel Mean Shift Clustering , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Fatih Murat Porikli,et al.  Kernel methods for weakly supervised mean shift clustering , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Doulaye Dembélé,et al.  Fuzzy C-means Method for Clustering Microarray Data , 2003, Bioinform..

[13]  Frank Nielsen,et al.  Shape Retrieval Using Hierarchical Total Bregman Soft Clustering , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.