Fast wide-area P-SAR/ISAR performance prediction

This paper presents techniques for predicting the resolution of the radar imaging point spread function (PSF). These techniques are useful for predicting the performance of multistatic passive synthetic aperture radars (P-SARs), and passive inverse SARs (P-ISARs), for which the PSF depends on a multitude of factors. Greedy algorithms are used in combination with the fast techniques to optimize the PSF resolution for both incoherent and coherent multistatic imaging scenarios, subject to constraints on combining methods, sparsity, and target isotropy.

[1]  Debora Pastina,et al.  Point Spread Function Analysis for GNSS-Based Multistatic SAR , 2015, IEEE Geoscience and Remote Sensing Letters.

[2]  William C. Barott,et al.  Passive radar for terminal area surveillance: Performance feasibility study , 2014, 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC).

[3]  Patrick K. Rennich Four-platform distributed MIMO radar measurements and imagery , 2009, 2009 IEEE Radar Conference.

[4]  Michael Inggs,et al.  A quantitative method for mono- and multistatic radar coverage area prediction , 2010, 2010 IEEE Radar Conference.

[5]  Gianluca Gennarelli,et al.  Passive Multiarray Image Fusion for RF Tomography by Opportunistic Sources , 2015, IEEE Geoscience and Remote Sensing Letters.

[6]  Julie Ann Jackson,et al.  Emitter selection criteria for passive multistatic synthetic aperture radar imaging , 2014 .

[7]  R.L. Moses,et al.  Synthetic aperture radar visualization , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[8]  Margaret Cheney,et al.  Resolution optimization with irregularly sampled Fourier data , 2013 .

[9]  Guillaume Ginolhac,et al.  Multistatic and Multiple Frequency Imaging Resolution Analysis-Application to GPS-Based Multistatic Radar , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Braham Himed,et al.  Simulation model for wide-area multi-service passive radar coverage predictions , 2013, 2013 IEEE Radar Conference (RadarCon13).

[11]  J. L. Garry,et al.  Investigations toward multistatic passive radar imaging , 2014, 2014 IEEE Radar Conference.

[12]  Marco Martorella,et al.  Theoretical foundation of passive bistatic ISAR imaging , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[13]  M.C. Wicks,et al.  Multistatic radar systems signal processing , 2006, 2006 IEEE Conference on Radar.

[14]  Dario Petri,et al.  Passive ISAR With DVB-T Signals , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Jacques G. Verly,et al.  Automatic Target Recognition for Passive Radar , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[16]  M. K. Baczyk,et al.  Passive ISAR imaging of air targets using DVB-T signals , 2014, 2014 IEEE Radar Conference.

[17]  M.C. Wicks,et al.  Sensor placement for improved target resolution in distributed radar systems , 2008, 2008 IEEE Radar Conference.

[18]  Pierfrancesco Lombardo,et al.  Multistatic and MIMO Distributed ISAR for Enhanced Cross-Range Resolution of Rotating Targets , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[20]  Randolph L. Moses,et al.  SAR imaging from partial-aperture data with frequency-band omissions , 2005, SPIE Defense + Commercial Sensing.