Tallo: A global tree allometry and crown architecture database

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.

Mark C. Vanderwel | S. Higgins | J. Rada | P. Balvanera | M. Dalponte | Y. Malhi | N. Barbier | J. Chave | D. Coomes | T. Feldpausch | R. Pélissier | P. Ploton | C. Ryan | F. Bongers | J. Doucet | L. Poorter | J. Caspersen | C. Wirth | M. Woods | L. Hutley | Hongyan Liu | S. Gourlet‐Fleury | N. Anten | D. Falster | B. Bond‐Lamberty | T. Kohyama | E. Lines | Jefferson S. Hall | H. Gilani | B. Kloeppel | J. Battles | A. Hemp | J. Domec | B. Sonké | J. Hernández‐Stefanoni | X. Mi | P. Marshall | L. Banin | H. Beeckman | S. Pearce | R. Duursma | T. Ichie | M. Vadeboncoeur | T. Jucker | Arshad Ali | Kiramat Hussain | K. O’Hara | M. Schlund | W. Farfán-Ríos | S. Mensah | K. Dimobe | D. Forrester | P. Peri | J. Meave | M. A. Zavala | M. Haeni | A. Fayolle | A. Shenkin | M. van Breugel | F. Mora | Y. Iida | Cécile Antin | N. Ayyappan | S. Momo | L. Alves | Y. Bocko | Sam Bowers | T. Brade | Arthur Chantrain | É. Forni | J. L. Godlee | Shem Kuyah | J. Loumeto | G. Sellan | F. Sterck | Alejandra G. Vovides | Yaozhan Xu | R. Holdaway | T. Kenzo | S. Ribeiro | K. Takagi | C. Lorimer | A. Trugman | V. Usoltsev | W. Xiang | Martin Svátek | S. Nissanka | Siliang Lin | Jiekun He | Haisheng Jiang | F. Fischer | E. Mattsson | R. Matula | Jingyu Dai | Y. Askari | Mohsen Javanmiri Pour | Jennifer C. Sanger | Jakub Kvasnica | A. Sanaei | H. Pourbabaei | Rajeev Chaudhary | Weiwei Wang | R. Aviles | S. Adu‐Bredu | M. J. Rodriguez Enriquez | Li‐Qiu Wang | G. Panzou | A. Valipour | Maryam Kazempour Larsary | G. Moncrieff | M. Aminpour | Ilondea B Angoboy | Karin Y van Ewijk | Puspa Raj Joshi | Hasan Kaboli | Suwash Kunwar | Farman Ullah | Fabiano de Aquino Ximenes | Toshihiro Yamada

[1]  A. Pitman,et al.  Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems , 2022, Biogeosciences.

[2]  H. Beeckman,et al.  Height-diameter allometric equations of an emergent tree species from the Congo Basin , 2022, Forest Ecology and Management.

[3]  Jonathan A. Walter,et al.  Power‐law scaling relationships link canopy structural complexity and height across forest types , 2021, Functional Ecology.

[4]  Brett R. Scheffers,et al.  Forest microclimates and climate change: Importance, drivers and future research agenda , 2021, Global change biology.

[5]  Sarah J. Graves,et al.  Estimating individual level plant traits at scale. , 2021, Ecological applications : a publication of the Ecological Society of America.

[6]  Roberta E. Martin,et al.  Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data , 2021, Remote Sensing of Environment.

[7]  Glenn R. Moncrieff,et al.  Pantropical variability in tree crown allometry , 2020, Global Ecology and Biogeography.

[8]  Fernanda Coelho de Souza,et al.  Tropical forests structure and diversity: A comparison of methodological choices , 2020, Methods in Ecology and Evolution.

[9]  S. Saatchi,et al.  A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories , 2020, Remote Sensing of Environment.

[10]  James S. Clark,et al.  Pervasive shifts in forest dynamics in a changing world , 2020, Science.

[11]  Francisca Rocha de Souza Pereira,et al.  Resource availability and disturbance shape maximum tree height across the Amazon , 2020, bioRxiv.

[12]  B. Enquist,et al.  The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape , 2019, bioRxiv.

[13]  Atticus E. L. Stovall,et al.  Tree height explains mortality risk during an intense drought , 2019, Nature Communications.

[14]  M. Disney,et al.  Time for a Plant Structural Economics Spectrum , 2019, Front. For. Glob. Change.

[15]  H. Qian,et al.  V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants , 2019, Ecography.

[16]  Daniele Silvestro,et al.  CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases , 2019, Methods in Ecology and Evolution.

[17]  Stephanie A. Bohlman,et al.  Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: a comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits , 2019, Biogeosciences.

[18]  M. Disney Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. , 2018, The New phytologist.

[19]  B. R. Ramesh,et al.  Pan‐tropical prediction of forest structure from the largest trees , 2018, Global Ecology and Biogeography.

[20]  Tommaso Jucker,et al.  Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes , 2018, Global change biology.

[21]  Tommaso Anfodillo,et al.  Plant height and hydraulic vulnerability to drought and cold , 2018, Proceedings of the National Academy of Sciences.

[22]  David Kenfack,et al.  Global importance of large‐diameter trees , 2018 .

[23]  M. Scheffer,et al.  A global climate niche for giant trees , 2018, Global change biology.

[24]  Michele Dalponte,et al.  Topography shapes the structure, composition and function of tropical forest landscapes , 2018, Ecology letters.

[25]  Stephen A. Smith,et al.  Constructing a broadly inclusive seed plant phylogeny. , 2018, American journal of botany.

[26]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[27]  Mark C. Vanderwel,et al.  Allometric equations for integrating remote sensing imagery into forest monitoring programmes , 2016, Global change biology.

[28]  Daniel S Falster,et al.  Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale , 2016, Global change biology.

[29]  Scott E. Nielsen,et al.  Regional and historical factors supplement current climate in shaping global forest canopy height , 2016 .

[30]  P. Couteron,et al.  Closing a gap in tropical forest biomass estimation: accounting for crown mass variation in pantropical allometries , 2015 .

[31]  A. Huth,et al.  The structure of tropical forests and sphere packings , 2015, Proceedings of the National Academy of Sciences.

[32]  N. McDowell,et al.  Larger trees suffer most during drought in forests worldwide , 2015, Nature Plants.

[33]  Olivier Bouriaud,et al.  Crown plasticity enables trees to optimize canopy packing in mixed-species forests , 2015 .

[34]  N. McDowell,et al.  Darcy's law predicts widespread forest mortality under climate warming , 2015 .

[35]  Sean M. McMahon,et al.  Size-related scaling of tree form and function in a mixed-age forest , 2015 .

[36]  Michael J. Aspinwall,et al.  BAAD: a Biomass And Allometry Database for woody plants , 2015 .

[37]  N. Swenson,et al.  Tree height–diameter allometry across the United States , 2015, Ecology and evolution.

[38]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[39]  O. Phillips,et al.  The importance of crown dimensions to improve tropical tree biomass estimates. , 2014, Ecological applications : a publication of the Ecological Society of America.

[40]  P. Vermeulen Crown depth as a result of evolutionary games: decreasing solar angle should lead to shallower, not deeper crowns. , 2014, The New phytologist.

[41]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[42]  F. Rovero,et al.  Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .

[43]  Helene C. Muller-Landau,et al.  Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest , 2013 .

[44]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[45]  D. A. King,et al.  What controls tropical forest architecture: testing environmental, structural and floristic drivers , 2012 .

[46]  Luis Cayuela,et al.  taxonstand: An r package for species names standardisation in vegetation databases , 2012 .

[47]  D. Coomes,et al.  Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition , 2012 .

[48]  G. Vieilledent,et al.  A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. , 2012, Ecological applications : a publication of the Ecological Society of America.

[49]  D. Coomes,et al.  A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests , 2012 .

[50]  Glenn R. Moncrieff,et al.  Tree allometries reflect a lifetime of herbivory in an African savanna. , 2011, Ecology.

[51]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[52]  Geoffrey B. West,et al.  A general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[53]  James H Brown,et al.  Extensions and evaluations of a general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[54]  Jeffrey M. Warren,et al.  Maximum height in a conifer is associated with conflicting requirements for xylem design , 2008, Proceedings of the National Academy of Sciences.

[55]  Drew W. Purves,et al.  Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species , 2007, PloS one.

[56]  Stephanie A. Bohlman,et al.  Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. , 2006, Ecology letters.

[57]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .