Tallo: A global tree allometry and crown architecture database
暂无分享,去创建一个
Mark C. Vanderwel | S. Higgins | J. Rada | P. Balvanera | M. Dalponte | Y. Malhi | N. Barbier | J. Chave | D. Coomes | T. Feldpausch | R. Pélissier | P. Ploton | C. Ryan | F. Bongers | J. Doucet | L. Poorter | J. Caspersen | C. Wirth | M. Woods | L. Hutley | Hongyan Liu | S. Gourlet‐Fleury | N. Anten | D. Falster | B. Bond‐Lamberty | T. Kohyama | E. Lines | Jefferson S. Hall | H. Gilani | B. Kloeppel | J. Battles | A. Hemp | J. Domec | B. Sonké | J. Hernández‐Stefanoni | X. Mi | P. Marshall | L. Banin | H. Beeckman | S. Pearce | R. Duursma | T. Ichie | M. Vadeboncoeur | T. Jucker | Arshad Ali | Kiramat Hussain | K. O’Hara | M. Schlund | W. Farfán-Ríos | S. Mensah | K. Dimobe | D. Forrester | P. Peri | J. Meave | M. A. Zavala | M. Haeni | A. Fayolle | A. Shenkin | M. van Breugel | F. Mora | Y. Iida | Cécile Antin | N. Ayyappan | S. Momo | L. Alves | Y. Bocko | Sam Bowers | T. Brade | Arthur Chantrain | É. Forni | J. L. Godlee | Shem Kuyah | J. Loumeto | G. Sellan | F. Sterck | Alejandra G. Vovides | Yaozhan Xu | R. Holdaway | T. Kenzo | S. Ribeiro | K. Takagi | C. Lorimer | A. Trugman | V. Usoltsev | W. Xiang | Martin Svátek | S. Nissanka | Siliang Lin | Jiekun He | Haisheng Jiang | F. Fischer | E. Mattsson | R. Matula | Jingyu Dai | Y. Askari | Mohsen Javanmiri Pour | Jennifer C. Sanger | Jakub Kvasnica | A. Sanaei | H. Pourbabaei | Rajeev Chaudhary | Weiwei Wang | R. Aviles | S. Adu‐Bredu | M. J. Rodriguez Enriquez | Li‐Qiu Wang | G. Panzou | A. Valipour | Maryam Kazempour Larsary | G. Moncrieff | M. Aminpour | Ilondea B Angoboy | Karin Y van Ewijk | Puspa Raj Joshi | Hasan Kaboli | Suwash Kunwar | Farman Ullah | Fabiano de Aquino Ximenes | Toshihiro Yamada
[1] A. Pitman,et al. Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems , 2022, Biogeosciences.
[2] H. Beeckman,et al. Height-diameter allometric equations of an emergent tree species from the Congo Basin , 2022, Forest Ecology and Management.
[3] Jonathan A. Walter,et al. Power‐law scaling relationships link canopy structural complexity and height across forest types , 2021, Functional Ecology.
[4] Brett R. Scheffers,et al. Forest microclimates and climate change: Importance, drivers and future research agenda , 2021, Global change biology.
[5] Sarah J. Graves,et al. Estimating individual level plant traits at scale. , 2021, Ecological applications : a publication of the Ecological Society of America.
[6] Roberta E. Martin,et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data , 2021, Remote Sensing of Environment.
[7] Glenn R. Moncrieff,et al. Pantropical variability in tree crown allometry , 2020, Global Ecology and Biogeography.
[8] Fernanda Coelho de Souza,et al. Tropical forests structure and diversity: A comparison of methodological choices , 2020, Methods in Ecology and Evolution.
[9] S. Saatchi,et al. A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories , 2020, Remote Sensing of Environment.
[10] James S. Clark,et al. Pervasive shifts in forest dynamics in a changing world , 2020, Science.
[11] Francisca Rocha de Souza Pereira,et al. Resource availability and disturbance shape maximum tree height across the Amazon , 2020, bioRxiv.
[12] B. Enquist,et al. The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape , 2019, bioRxiv.
[13] Atticus E. L. Stovall,et al. Tree height explains mortality risk during an intense drought , 2019, Nature Communications.
[14] M. Disney,et al. Time for a Plant Structural Economics Spectrum , 2019, Front. For. Glob. Change.
[15] H. Qian,et al. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants , 2019, Ecography.
[16] Daniele Silvestro,et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases , 2019, Methods in Ecology and Evolution.
[17] Stephanie A. Bohlman,et al. Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: a comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits , 2019, Biogeosciences.
[18] M. Disney. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. , 2018, The New phytologist.
[19] B. R. Ramesh,et al. Pan‐tropical prediction of forest structure from the largest trees , 2018, Global Ecology and Biogeography.
[20] Tommaso Jucker,et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes , 2018, Global change biology.
[21] Tommaso Anfodillo,et al. Plant height and hydraulic vulnerability to drought and cold , 2018, Proceedings of the National Academy of Sciences.
[22] David Kenfack,et al. Global importance of large‐diameter trees , 2018 .
[23] M. Scheffer,et al. A global climate niche for giant trees , 2018, Global change biology.
[24] Michele Dalponte,et al. Topography shapes the structure, composition and function of tropical forest landscapes , 2018, Ecology letters.
[25] Stephen A. Smith,et al. Constructing a broadly inclusive seed plant phylogeny. , 2018, American journal of botany.
[26] Stephen E. Fick,et al. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .
[27] Mark C. Vanderwel,et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes , 2016, Global change biology.
[28] Daniel S Falster,et al. Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale , 2016, Global change biology.
[29] Scott E. Nielsen,et al. Regional and historical factors supplement current climate in shaping global forest canopy height , 2016 .
[30] P. Couteron,et al. Closing a gap in tropical forest biomass estimation: accounting for crown mass variation in pantropical allometries , 2015 .
[31] A. Huth,et al. The structure of tropical forests and sphere packings , 2015, Proceedings of the National Academy of Sciences.
[32] N. McDowell,et al. Larger trees suffer most during drought in forests worldwide , 2015, Nature Plants.
[33] Olivier Bouriaud,et al. Crown plasticity enables trees to optimize canopy packing in mixed-species forests , 2015 .
[34] N. McDowell,et al. Darcy's law predicts widespread forest mortality under climate warming , 2015 .
[35] Sean M. McMahon,et al. Size-related scaling of tree form and function in a mixed-age forest , 2015 .
[36] Michael J. Aspinwall,et al. BAAD: a Biomass And Allometry Database for woody plants , 2015 .
[37] N. Swenson,et al. Tree height–diameter allometry across the United States , 2015, Ecology and evolution.
[38] B. Nelson,et al. Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.
[39] O. Phillips,et al. The importance of crown dimensions to improve tropical tree biomass estimates. , 2014, Ecological applications : a publication of the Ecological Society of America.
[40] P. Vermeulen. Crown depth as a result of evolutionary games: decreasing solar angle should lead to shallower, not deeper crowns. , 2014, The New phytologist.
[41] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[42] F. Rovero,et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .
[43] Helene C. Muller-Landau,et al. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest , 2013 .
[44] Zhenyuan Lu,et al. The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.
[45] D. A. King,et al. What controls tropical forest architecture: testing environmental, structural and floristic drivers , 2012 .
[46] Luis Cayuela,et al. taxonstand: An r package for species names standardisation in vegetation databases , 2012 .
[47] D. Coomes,et al. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition , 2012 .
[48] G. Vieilledent,et al. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. , 2012, Ecological applications : a publication of the Ecological Society of America.
[49] D. Coomes,et al. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests , 2012 .
[50] Glenn R. Moncrieff,et al. Tree allometries reflect a lifetime of herbivory in an African savanna. , 2011, Ecology.
[51] D. A. King,et al. Height-diameter allometry of tropical forest trees , 2010 .
[52] Geoffrey B. West,et al. A general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.
[53] James H Brown,et al. Extensions and evaluations of a general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.
[54] Jeffrey M. Warren,et al. Maximum height in a conifer is associated with conflicting requirements for xylem design , 2008, Proceedings of the National Academy of Sciences.
[55] Drew W. Purves,et al. Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species , 2007, PloS one.
[56] Stephanie A. Bohlman,et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. , 2006, Ecology letters.
[57] G. Powell,et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .