Robust synchronisation of unstable linear time-invariant systems
暂无分享,去创建一个
[1] Tryphon T. Georgiou,et al. Robust stability of feedback systems: a geometric approach using the gap metric , 1993 .
[2] George Weiss,et al. Representation of shift-invariant operators onL2 byH∞ transfer functions: An elementary proof, a generalization toLp, and a counterexample forL∞ , 1991, Math. Control. Signals Syst..
[3] Ulrich Eggers,et al. Introduction To Infinite Dimensional Linear Systems Theory , 2016 .
[4] Anders Rantzer,et al. Consensus analysis via integral quadratic constraints , 2014 .
[5] Glenn Vinnicombe,et al. Linear feedback systems and the graph topology , 2002, IEEE Trans. Autom. Control..
[6] T. Georgiou,et al. Optimal robustness in the gap metric , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.
[7] Ulf T. Jönsson,et al. Robust Stability Analysis for Feedback Interconnections of Time-Varying Linear Systems , 2013, SIAM J. Control. Optim..
[8] A. Rantzer,et al. System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..
[9] Hans Zwart,et al. An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.
[10] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[11] Anders Rantzer,et al. A Unifying Framework for Robust Synchronization of Heterogeneous Networks via Integral Quadratic Constraints , 2016, IEEE Transactions on Automatic Control.
[12] Ulf T. Jönsson,et al. Robustness Analysis for Feedback Interconnections of Distributed Systems via Integral Quadratic Constraints , 2012, IEEE Transactions on Automatic Control.