Selectively transporting small chiral particles with circularly polarized Airy beams.

Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

[1]  T. Cao,et al.  Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region. , 2018, Nanoscale.

[2]  D. Christodoulides,et al.  Accelerating finite energy Airy beams. , 2007, Optics letters.

[3]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[4]  Lei Zhou,et al.  Realization of optical pulling forces using chirality , 2014 .

[5]  Yuri S. Kivshar,et al.  Airy plasmons: non‐diffracting optical surface waves , 2014 .

[6]  D. Christodoulides,et al.  Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams , 2013 .

[7]  Shiyang Liu,et al.  Chirality sorting using two-wave-interference–induced lateral optical force , 2016 .

[8]  Cheng-Wei Qiu,et al.  Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects , 2017, Light: Science & Applications.

[9]  A. Y. Bekshaev,et al.  Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever , 2015 .

[10]  Simon Hanna,et al.  Shape-induced force fields in optical trapping , 2014, Nature Photonics.

[11]  Jianping Ding,et al.  Optical trapping with focused Airy beams. , 2011, Applied optics.

[12]  D. Christodoulides,et al.  Self-healing properties of optical Airy beams. , 2008, Optics express.

[13]  Peng Zhang,et al.  Trapping and guiding microparticles with morphing autofocusing Airy beams. , 2011, Optics letters.

[14]  Dynamic consequences of optical spin–orbit interaction , 2015, 1504.01766.

[15]  Alan D. Raisanen,et al.  Stable optical lift , 2010 .

[16]  S. B. Wang,et al.  Lateral optical force on chiral particles near a surface , 2013, Nature Communications.

[17]  Shiyang Liu,et al.  Rigorous full-wave calculation of optical forces on dielectric and metallic microparticles immersed in a vector Airy beam. , 2017, Optics express.

[18]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[19]  Stephen M. Barnett,et al.  Discriminatory optical force for chiral molecules , 2014 .

[20]  F. J. Rodríguez-Fortuño,et al.  Lateral forces on circularly polarizable particles near a surface , 2015, Nature Communications.

[21]  S. Barnett,et al.  Diffraction gratings for chiral molecules and their applications. , 2014, The journal of physical chemistry. A.

[22]  Franco Nori,et al.  Extraordinary momentum and spin in evanescent waves , 2013, Nature Communications.

[23]  Roberto Morandotti,et al.  Nonparaxial Mathieu and Weber accelerating beams. , 2012, Physical review letters.

[24]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[25]  Cheng-Wei Qiu,et al.  All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in Interference Fields. , 2017, ACS nano.

[26]  Grover A. Swartzlander,et al.  Optical lift from dielectric semicylinders. , 2012, Optics letters.

[27]  Jun Chen,et al.  Optical pulling force , 2011 .

[28]  Jianguo Tian,et al.  Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam. , 2010, Optics express.

[29]  Demetrios N. Christodoulides,et al.  Curved singular beams for three-dimensional particle manipulation , 2015, Scientific Reports.

[30]  Weiqiang Ding,et al.  Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force. , 2016, Nanoscale.

[31]  Demetrios N. Christodoulides,et al.  Observation of accelerating Airy beams. , 2007 .

[32]  Federico Capasso,et al.  Lateral chirality-sorting optical forces , 2015, Proceedings of the National Academy of Sciences.

[33]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[34]  M. Nieto-Vesperinas,et al.  Controlling Lateral Fano Interference Optical Force with Au–Ge2Sb2Te5 Hybrid Nanostructure , 2016 .

[35]  Shiyang Liu,et al.  Tailoring azimuthal optical force on lossy chiral particles in Bessel beams , 2014 .

[36]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[37]  Haoze Lin,et al.  On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields , 2017 .