Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage–fusion–bridge for telomere stabilization

[1]  Nobuhiko Okamoto,et al.  Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. , 2012, European journal of medical genetics.

[2]  J. Lupski,et al.  Constitutional tandem duplication of 9q34 that truncates EHMT1 in a child with ganglioglioma , 2012, Pediatric blood & cancer.

[3]  Toshiro K. Ohsumi,et al.  Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries , 2012, Cell.

[4]  C. Schildkraut,et al.  Human telomeres replicate using chromosome-specific, rather than universal, replication programs , 2012, The Journal of cell biology.

[5]  Ira M. Hall,et al.  Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration , 2012, Nature Genetics.

[6]  R. Anand,et al.  Overcoming natural replication barriers: differential helicase requirements , 2011, Nucleic acids research.

[7]  J. Lupski,et al.  Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome , 2011, Nature Genetics.

[8]  P. Stankiewicz,et al.  Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements , 2011, Cell.

[9]  M. Fichera,et al.  Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome , 2011, PLoS genetics.

[10]  J. Lupski,et al.  Alu-specific microhomology-mediated deletion of the final exon of SPAST in three unrelated subjects with hereditary spastic paraplegia , 2011, Genetics in Medicine.

[11]  D. Moerman,et al.  DNA Synthesis Generates Terminal Duplications That Seal End-to-End Chromosome Fusions , 2011, Science.

[12]  Juan I. Young,et al.  Phenotypic Consequences of Copy Number Variation: Insights from Smith-Magenis and Potocki-Lupski Syndrome Mouse Models , 2010, PLoS biology.

[13]  H. Kazazian,et al.  High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. , 2010, Genome research.

[14]  D. Valle,et al.  Mobile Interspersed Repeats Are Major Structural Variants in the Human Genome , 2010, Cell.

[15]  J. Lupski,et al.  Retrotransposition and Structural Variation in the Human Genome , 2010, Cell.

[16]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[17]  Evan E. Eichler,et al.  LINE-1 Retrotransposition Activity in Human Genomes , 2010, Cell.

[18]  J. Lupski,et al.  Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. , 2010, American journal of human genetics.

[19]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[20]  J. Lupski,et al.  Complex human chromosomal and genomic rearrangements. , 2009, Trends in genetics : TIG.

[21]  J. Lupski,et al.  The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans , 2009, Nature Genetics.

[22]  P. Stankiewicz,et al.  Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. , 2009, Human molecular genetics.

[23]  A. C. Chinault,et al.  Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome. , 2009, Human molecular genetics.

[24]  R. Giorda,et al.  Inverted duplications deletions: underdiagnosed rearrangements?? , 2009, Clinical genetics.

[25]  Z. Ou,et al.  Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. , 2009, The Journal of molecular diagnostics : JMD.

[26]  J. Lupski,et al.  Genomic disorders ten years on , 2009, Genome Medicine.

[27]  E. Noguchi,et al.  Supplemental information Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres , 2009 .

[28]  L. Shaffer,et al.  Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements , 2009, Human Genetics.

[29]  J. Lupski,et al.  A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation , 2009, PLoS genetics.

[30]  E. V. Ponochevnaya,et al.  Rearrangements of chromosome 9 in different hematological neoplasias , 2008, Cytology and Genetics.

[31]  E. Bakker,et al.  A 400kb duplication, 2.4Mb triplication and 130kb duplication of 9q34.3 in a patient with severe mental retardation. , 2008, European journal of medical genetics.

[32]  P. Stankiewicz,et al.  Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: A study of 5,380 cases , 2008, American journal of medical genetics. Part A.

[33]  J. Lupski,et al.  A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders , 2007, Cell.

[34]  Ankita Patel,et al.  Prenatal diagnosis of a 9q34.3 microdeletion by array‐CGH in a fetus with an apparently balanced translocation , 2007, Prenatal diagnosis.

[35]  D. Ledbetter,et al.  Cryptic telomere imbalance: A 15‐year update , 2007, American journal of medical genetics. Part C, Seminars in medical genetics.

[36]  R. Verdun,et al.  Replication and protection of telomeres , 2007, Nature.

[37]  S. Mirkin,et al.  Replication Fork Stalling at Natural Impediments , 2007, Microbiology and Molecular Biology Reviews.

[38]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[39]  N. de Leeuw,et al.  Interstitial 2.2 Mb deletion at 9q34 in a patient with mental retardation but without classical features of the 9q subtelomeric deletion syndrome , 2006, American journal of medical genetics. Part A.

[40]  R. Giorda,et al.  Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome , 2005, Journal of Medical Genetics.

[41]  W. Sanger,et al.  9q34 rearrangements in BCR/ABL fusion-negative acute lymphoblastic leukemia. , 2005, Cancer genetics and cytogenetics.

[42]  T. Varga,et al.  Chromosomal aberrations induced by double strand DNA breaks. , 2005, DNA repair.

[43]  P. Stankiewicz,et al.  Deletion 9q34.3 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly , 2005, Journal of Medical Genetics.

[44]  R. Wells,et al.  Non-B DNA Conformations, Genomic Rearrangements, and Human Disease* , 2004, Journal of Biological Chemistry.

[45]  L. Shaffer,et al.  Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions. , 2003, Human molecular genetics.

[46]  P. Stankiewicz,et al.  Genome architecture, rearrangements and genomic disorders. , 2002, Trends in genetics : TIG.

[47]  S. Scherer,et al.  Characterization of terminal deletions at 7q32 and 22q13.3 healed by De novo telomere addition. , 2000, American journal of human genetics.

[48]  D. Valle,et al.  Online Mendelian Inheritance In Man (OMIM) , 2000, Human mutation.

[49]  K. Devriendt,et al.  Triplication of distal chromosome 10q , 1999, Journal of medical genetics.

[50]  J. Lupski Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. , 1998, Trends in genetics : TIG.

[51]  V. Jay,et al.  Partial tetrasomy with triplication of chromosome (5) (p14-p15.33) in a patient with severe multiple congenital anomalies. , 1998, American journal of medical genetics.

[52]  J. Crolla,et al.  Intrachromosomal triplication of distal 7p. , 1998, Journal of medical genetics.

[53]  L. Kearney,et al.  Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements. , 1996, Human molecular genetics.

[54]  A. Rauch,et al.  Deletion or triplication of the α3(VI) collagen gene in three patients with 2q37 chromosome aberrations and symptoms of collagen‐related disorders , 1996, Clinical genetics.

[55]  H. Williams,et al.  Healing of broken human chromosomes by the addition of telomeric repeats. , 1994, American journal of human genetics.

[56]  J. Lamb,et al.  De novo truncation of chromosome 16p and healing with (TTAGGG)n in the alpha-thalassemia/mental retardation syndrome (ATR-16). , 1993, American journal of human genetics.

[57]  A. Wilkie,et al.  A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n , 1990, Nature.

[58]  J. D. Watson Origin of Concatemeric T7DNA , 1972 .

[59]  B. Mcclintock,et al.  The Stability of Broken Ends of Chromosomes in Zea Mays. , 1941, Genetics.

[60]  E. Bakker,et al.  A 400 kb duplication , 2 . 4 Mb triplication and 130 kb duplication of 9 q 34 . 3 in a patient with severe mental retardation , 2010 .

[61]  L. Shaffer,et al.  Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements , 2003, Human Genetics.

[62]  J. Watson Origin of concatemeric T7 DNA. , 1972, Nature: New biology.