Repeatability of SUV measurements in serial PET.

PURPOSE The standardized uptake value (SUV) is a quantitative measure of FDG tumor uptake frequently used as a tool to monitor therapeutic response. This study aims to (i) assess the reproducibility and uncertainty of SUV max and SUV mean, due to purely statistical, i.e., nonbiological, effects and (ii) to establish the minimum uncertainty below which changes in SUV cannot be expected to be an indicator of physiological changes. METHODS Three sets of measurements were made using a GE Discovery STE PET/CT Scanner in 3D mode: (1) A uniform 68Ge 20 cm diameter cylindrical phantom was imaged. Thirty serial frames were acquired for durations of 3, 6, 10, 15, and 30 min. (2) Esser flangeless phantom (Data Spectrum, approximately 6.1 L) with fillable thin-walled cylinders inserts (diameters: 8, 12, 16, and 25 mm; height: approximately 3.8 mm) was scanned for five consecutive 3 min runs. The cylinders were filled with 18FDG with a 37 kBq/cc concentration, and with a target-to-background ratio (T/BKG) of 3/1. (3) Eight cancer patients with healthy livers were scanned approximately 1.5 h post injection. Three sequential 3 min scans were performed for one bed position covering the liver, with the patient and bed remaining at the same position for the entire length of the scan. Volumes of interest were drawn on all images using the corresponding CT and then transferred to the PET images. For each study (1-3), the average percent change in SUV mean and SUV max were determined for each run pair. Moreover, the repeatability coefficient was calculated for both the SUV mean and SUV max for each pair of runs. Finally, the overall ROI repeatability coefficient was determined for each pair of runs. RESULTS For the 68Ge phantom the average percent change in SUV max and SUV mean decrease as a function of increasing acquisition time from 4.7 +/- 3.1 to 1.1 +/- 0.6%, and from 0.14 +/- 0.09 to 0.04 +/- 0.03%, respectively. Similarly, the coefficients of repeatability also decrease between the 3 and 30 min acquisition scans, in the range of 10.9 +/- 3.9% - 2.6 +/- 0.9%, and 0.3 +/- 0.1% - 0.10 +/- 0.04%, for the SUV max and SUV mean, respectively. The overall ROI repeatability decreased from 18.9 +/- 0.2 to 6.0 +/- 0.1% between the 3 and 30 min acquisition scans. For the l8FDG phantom, the average percent change in SUV max and SUV mean decreases with target diameter from 3.6 +/- 2.0 to 1.5 +/- 0.8% and 1.5 +/- 1.3 to 0.26 +/- 0.15%, respectively, for targets from 8-25 mm in diameter and for a region in the background (BKG). The coefficients of repeatability for SUV max and SUV mean also decrease as a function of target diameter from 7.1 +/- 2.5 to 2.4 +/- 0.9 and 4.2 +/- 1.5 to 0.6 +/- 0.2, respectively, for targets from 8 mm to BKG in diameter. Finally, overall ROI repeatability decreased from 12.0 +/- 4.1 to 13.4 +/- 0.5 targets from 8 mm to BKG in diameter. Finally, for the measurements in healthy livers the average percent change in SUVmax and SUV mean were in the range of 0.5 +/- 0.2% - 6.2 +/- 3.9% and 0.4 +/- 0.1 and 1.6 +/- 1%, respectively. The coefficients of repeatability for SUV max and SUV men are in the range of 0.6 +/- 0.7% - 9.5 +/- 12% and 0.6 +/- 0.7% - 2.9 +/- 3.6%, respectively. The overall target repeatability varied between 27.9 +/- 0.5% and 41.1 +/- 1.0%. CONCLUSIONS The statistical fluctuations of the SUV mean are half as large as those of the SUV max in the absence of biological or physiological effects. In addition, for clinically applicable scan durations (i.e., approximately 3 min) and FDG concentrations, the SUV max and SUV mean have similar amounts of statistical fluctuation for small regions. However, the statistical fluctuations of the SUVmean rapidly decrease with respect tothe SUVmax as the statistical power of the data grows either due to longer scanning times or as the target regions encompass a larger volume.

[1]  G van Kaick,et al.  Fluorodeoxyglucose imaging of advanced head and neck cancer after chemotherapy. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  Douglas G. Altman,et al.  Measurement in Medicine: The Analysis of Method Comparison Studies , 1983 .

[3]  I. Buvat,et al.  Partial-Volume Effect in PET Tumor Imaging* , 2007, Journal of Nuclear Medicine.

[4]  M. Schwaiger,et al.  Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  R. Boellaard,et al.  Repeatability of 18F-FDG PET in a Multicenter Phase I Study of Patients with Advanced Gastrointestinal Malignancies , 2009, Journal of Nuclear Medicine.

[6]  Paul E Kinahan,et al.  Dual Energy CT Attenuation Correction Methods for Quantitative Assessment of Response to Cancer Therapy with PET/CT Imaging , 2006, Technology in cancer research & treatment.

[7]  A. Beckett,et al.  AKUFO AND IBARAPA. , 1965, Lancet.

[8]  Cesare Guida,et al.  18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  M Schwaiger,et al.  Reproducibility of metabolic measurements in malignant tumors using FDG PET. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  K. Herholz,et al.  Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. , 1999, European journal of cancer.

[11]  W. Weber Chaperoning drug development with PET. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  D. Visvikis,et al.  Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET , 2001, European Journal of Nuclear Medicine.

[13]  Wolfgang A Weber,et al.  Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  Claude Nahmias,et al.  Reproducibility of Standardized Uptake Value Measurements Determined by 18F-FDG PET in Malignant Tumors , 2008, Journal of Nuclear Medicine.

[15]  J. Leonard,et al.  PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin's disease. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  R. Hustinx,et al.  Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  J. Bergh,et al.  Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? , 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  R. Lufkin,et al.  Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: quantitation with PET. , 1993, Radiology.

[19]  Geoffrey McLennan,et al.  PET/CT Assessment of Response to Therapy: Tumor Change Measurement, Truth Data, and Error. , 2009, Translational oncology.

[20]  M Schwaiger,et al.  Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  Paul E Kinahan,et al.  Variability in PET quantitation within a multicenter consortium. , 2010, Medical physics.

[22]  E Yorke,et al.  Four-dimensional (4D) PET/CT imaging of the thorax. , 2004, Medical physics.

[23]  L. Clarke,et al.  Quantitative imaging for evaluation of response to cancer therapy. , 2009, Translational oncology.

[24]  O. Hoekstra,et al.  Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  Paul Kinahan,et al.  Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. , 2010, Medical physics.

[26]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[27]  V. Lowe,et al.  Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucose. , 1994, Radiology.

[28]  Bruce D Cheson,et al.  Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development , 2005, Clinical Cancer Research.

[29]  R L Wahl,et al.  Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  David W Townsend,et al.  Time Course of Early Response to Chemotherapy in Non–Small Cell Lung Cancer Patients with 18F-FDG PET/CT , 2007, Journal of Nuclear Medicine.

[31]  H. Minn,et al.  [18F]Fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer , 2004, European Journal of Nuclear Medicine.

[32]  J M Hoffman,et al.  Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  Y. Yonekura,et al.  Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[34]  Adriaan A. Lammertsma,et al.  Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[35]  Michael Bader,et al.  Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.