An exhaustive experimental study of synchronization by forcing on elementary cellular automata

We study a way of coupling two configurations of the same cellular automaton rule for all elementary cellular automata (ECA). We experimentally show that there are only two possible behaviors: either synchronization for all coupling strength, or a phase transition. This transition is shown to belong to the directed percolation universality class, even for a non chaotic rule and for rules with particles.

[1]  S. Kauffman Emergent properties in random complex automata , 1984 .

[2]  J. van Leeuwen,et al.  Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.

[3]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[4]  Maritan,et al.  Chaos, noise, and synchronization. , 1994, Physical review letters.

[5]  Nazim Fatès,et al.  Asynchronism Induces Second-Order Phase Transitions in Elementary Cellular Automata , 2007, J. Cell. Autom..

[6]  F. Bagnoli,et al.  Synchronization of non-chaotic dynamical systems , 2001 .

[7]  Peter Grassberger,et al.  Are damage spreading transitions generically in the universality class of directed percolation? , 1994, cond-mat/9409068.

[8]  Damián H. Zanette,et al.  Synchronization of Coupled Extended Dynamical Systems: a Short Review , 2003, Int. J. Bifurc. Chaos.

[9]  P. Grassberger SYNCHRONIZATION OF COUPLED SYSTEMS WITH SPATIOTEMPORAL CHAOS , 1999 .

[10]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  A. S. Pikovskii Synchronization and stochastization of array of self-excited oscillators by external noise , 1984 .

[12]  R. López-Ruiz,et al.  Self-synchronization of Cellular Automata: An Attempt to Control Patterns , 2005, International Conference on Computational Science.

[13]  Andrew Wuensche,et al.  Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1998, Complex..

[14]  Damián H. Zanette,et al.  SYNCHRONIZATION OF STOCHASTICALLY COUPLED CELLULAR AUTOMATA , 1998 .

[15]  Michel Morvan,et al.  Coalescing Cellular Automata , 2006, International Conference on Computational Science.