ForConX: A forcefield conversion tool based on XML

The force field conversion from one MD program to another one is exhausting and error‐prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber, Charmm, Dl‐Poly, Gromacs, and Lammps. We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate comprising also Urey–Bradley and Ryckaert–Bellemans potentials. © 2017 Wiley Periodicals, Inc.

[1]  A. Heuer,et al.  Comparing induced point-dipoles and Drude oscillators. , 2015, Physical chemistry chemical physics : PCCP.

[2]  John E. Stone,et al.  TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD , 2016, J. Chem. Inf. Model..

[3]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[4]  Victor H Rusu,et al.  MDWiZ: a platform for the automated translation of molecular dynamics simulations. , 2014, Journal of molecular graphics & modelling.

[5]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[6]  K. Kremer,et al.  Strongly Charged, Flexible Polyelectrolytes in Poor Solvents: Molecular Dynamics Simulations , 1998, cond-mat/9812044.

[7]  T. Lim Mathematical Relationships Between Bond-Bending Force Fields , 2002 .

[8]  Andreas Heuer,et al.  Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations. , 2013, The journal of physical chemistry. B.

[9]  A. Pádua,et al.  Modeling Ionic Liquids Using a Systematic All-Atom Force Field , 2004 .

[10]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. III. Time-Dependent Self-Correlation Functions , 1970 .

[11]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[12]  D. van der Spoel,et al.  Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: Micellar structure and chain relaxation , 2000 .

[13]  C. Brooks Computer simulation of liquids , 1989 .

[14]  T. Morawietz,et al.  How van der Waals interactions determine the unique properties of water , 2016, Proceedings of the National Academy of Sciences.

[15]  Oleg Borodin,et al.  Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids. , 2009, The journal of physical chemistry. B.

[16]  O. Borodin,et al.  Viscosity of a room temperature ionic liquid: predictions from nonequilibrium and equilibrium molecular dynamics simulations. , 2009, Journal of Physical Chemistry B.

[17]  Christoph Dellago,et al.  Neural networks for local structure detection in polymorphic systems. , 2013, The Journal of chemical physics.

[18]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[19]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[20]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[21]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[22]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[23]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[24]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[25]  G. Voth,et al.  Molecular Dynamics Simulation of Ionic Liquids: The Effect of Electronic Polarizability , 2004 .

[26]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[27]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[28]  Ross C. Walker,et al.  CHAMBER: Comprehensive support for CHARMM force fields within the AMBER software , 2009 .

[29]  M. Cho,et al.  Multiscale modeling of size-dependent elastic properties of carbon nanotube/ polymer nanocomposites with interfacial imperfections , 2012 .

[30]  A. Heuer,et al.  Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures: A Molecular Dynamics Simulation Study. , 2012, ACS Macro Letters.

[31]  A. Pádua,et al.  Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions , 2004 .

[32]  O. Steinhauser,et al.  The effect of Thole functions on the simulation of ionic liquids with point induced dipoles at various densities. , 2013, The Journal of chemical physics.