Fabrication of inkjet printed organic photovoltaics on flexible Ag electrode with additives

Abstract In this paper, we describe organic photovoltaics (OPVs) based on flexible thin film Ag anodes that are fabricated using a controlled deposition of photoactive layer by inkjet printing. The inkjet printed OPV photo-active layer is a P3HT:PCBM blend incorporated with a high boiling point additive, 1,6-hexanedithiol which serves to allow improved morphology. The devices show comparable power conversion efficiency to those fabricated using spin-coating techniques. Optimization of procedures for OPV fabrication without ITO electrodes or spin-coating of the active layer is a vital step towards realizing the potential of OPVs for mass production.

[1]  Nigel J. Alley,et al.  Stable organic photovoltaics using Ag thin film anodes , 2012 .

[2]  Manikandan Jayaraman,et al.  Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers , 1993 .

[3]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[4]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[5]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[6]  Zhenan Bao,et al.  Solvent additives and their effects on blend morphologies of bulk heterojunctions , 2011 .

[7]  Bao Lei,et al.  Quantifying the relation between the morphology and performance of polymer solar cells using Monte Carlo simulations , 2008 .

[8]  G. Gustafsson,et al.  Thermochromism in poly(3-alkylthiophenes) and their polymer blends , 1990 .

[9]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[10]  Valentin D. Mihailetchi,et al.  Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells , 2006 .

[11]  K. Liao,et al.  Flexible Ag electrode for use in organic photovoltaics , 2011 .

[12]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[13]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[14]  Siegmar Roth,et al.  Molecular rectifiers and transistors based on π-conjugated materials , 1998 .

[15]  G. Gustafsson,et al.  Optical absorption of poly(3-alkylthiophenes) at low temperatures , 1989 .

[16]  Daniel Moses,et al.  Method for increasing the photoconductive response in conjugated polymer/fullerene composites , 2006 .

[17]  Tao Wang,et al.  Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells During Thermal Annealing , 2011 .

[18]  H. Sirringhaus,et al.  Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) , 2003 .

[19]  Mikkel Jørgensen,et al.  Roll‐to‐Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration , 2013 .

[20]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[21]  Gang Li,et al.  Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells , 2008 .

[22]  Mikkel Jørgensen,et al.  Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes. , 2012, Nanoscale.

[23]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[24]  Martin Pfeiffer,et al.  High efficiency organic solar cells based on single or multiple PIN structures , 2004 .

[25]  K. Liao,et al.  Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide , 2011 .

[26]  Mikkel Jørgensen,et al.  Fast Inline Roll‐to‐Roll Printing for Indium‐Tin‐Oxide‐Free Polymer Solar Cells Using Automatic Registration , 2013 .

[27]  Fang‐Chung Chen,et al.  Solvent mixtures for improving device efficiency of polymer photovoltaic devices , 2008 .

[28]  Klaus Meerholz,et al.  Morphology Control in Solution‐Processed Bulk‐Heterojunction Solar Cell Mixtures , 2009 .

[29]  N. S. Sariciftci,et al.  Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review , 2011 .

[30]  Tatsuya Shimoda,et al.  Inkjet printing of polymer thin film transistors , 2003 .

[31]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[32]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[33]  Martin Kumar Patel,et al.  Ex‐ante environmental and economic evaluation of polymer photovoltaics , 2009 .

[34]  Alvin W. Orbaek,et al.  Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBM bulk-heterojunction organic photovoltaics , 2012 .

[35]  Jenny Clark,et al.  Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. , 2007, Physical review letters.

[36]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[37]  Gang Li,et al.  Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive , 2009 .

[38]  K. Liao,et al.  Effect of printing parameters and annealing on organic photovoltaics performance , 2012 .

[39]  R. Deegan,et al.  Pattern formation in drying drops , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[41]  Suren A. Gevorgyan,et al.  Freely available OPV—The fast way to progress , 2013 .

[42]  K. Liao,et al.  Optimization of organic solar cells with thin film Au as anode , 2011 .

[43]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[44]  Suren A. Gevorgyan,et al.  Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules , 2013 .

[45]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[46]  Max Shtein,et al.  Transparent and conductive electrodes based on unpatterned, thin metal films , 2008 .

[47]  Wayne Cranton,et al.  Low temperature remote plasma sputtering of indium tin oxide for flexible display applications , 2009 .

[48]  A. Walker,et al.  Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. , 2005, Nano letters.

[49]  Martin Egginger,et al.  Material Solubility‐Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells , 2009 .

[50]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[51]  Soniya D. Yambem,et al.  Designs and Architectures for the Next Generation of Organic Solar Cells , 2010 .