On the solutions of a Lebesgue–Nagell type equation
暂无分享,去创建一个
[1] K. Chakraborty,et al. Exponents of class groups of certain imaginary quadratic fields , 2018, 1801.00392.
[2] K. Chakraborty,et al. Divisibility of the class numbers of imaginary quadratic fields , 2017, 1710.03662.
[3] H. K. Saikia,et al. On the divisibility of class numbers of quadratic fields and the solvability of diophantine equations , 2016, 1710.09755.
[4] G. Soydan,et al. The Diophantine Equation x^{2}+11^{m}=y^{n} , 2011, 1112.5986.
[5] F. Luca,et al. On the diophantine equation x(2) + C=2y(n) , 2009 .
[6] F. Luca,et al. ON THE DIOPHANTINE EQUATION x2 + C = 2yn , 2009 .
[7] N. Saradha,et al. Solutions of some generalized Ramanujan-Nagell equations , 2006 .
[8] Maurice Mignotte,et al. Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.
[9] Michael A. Bennett,et al. Ternary Diophantine Equations via Galois Representations and Modular Forms , 2004, Canadian Journal of Mathematics.
[10] Guillaume Hanrot,et al. Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .
[11] B. Sury. On the Diophantine equation x2 + 2 = yn , 2000 .
[12] M. Le. A Note on the Generalized Ramanujan-Nagell Equation , 1995 .
[13] J. H. E. Cohn,et al. The Diophantine equation x2+3 = yn , 1993, Glasgow Mathematical Journal.
[14] W. Ljunggren. On the diophantine equation x2+D=4yq , 1971 .
[15] Diana Savin,et al. ABOUT A DIOPHANTINE EQUATION , 2009 .
[16] J. Cohn. The diophantine equation $x^2 + C = y^n$, II , 2003 .
[17] F. S. A. Muriefah,et al. The diophantine equation x2+3m=yn , 1998 .
[18] M. Le,et al. On the diophantine equation $(x^m-1)/(x-1) = y^n$ , 1995 .
[19] L. Maohua. On the number of solutions of the diophantine equation x2+D=pn , 1993 .