On the solutions of a Lebesgue–Nagell type equation

[1]  K. Chakraborty,et al.  Exponents of class groups of certain imaginary quadratic fields , 2018, 1801.00392.

[2]  K. Chakraborty,et al.  Divisibility of the class numbers of imaginary quadratic fields , 2017, 1710.03662.

[3]  H. K. Saikia,et al.  On the divisibility of class numbers of quadratic fields and the solvability of diophantine equations , 2016, 1710.09755.

[4]  G. Soydan,et al.  The Diophantine Equation x^{2}+11^{m}=y^{n} , 2011, 1112.5986.

[5]  F. Luca,et al.  On the diophantine equation x(2) + C=2y(n) , 2009 .

[6]  F. Luca,et al.  ON THE DIOPHANTINE EQUATION x2 + C = 2yn , 2009 .

[7]  N. Saradha,et al.  Solutions of some generalized Ramanujan-Nagell equations , 2006 .

[8]  Maurice Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.

[9]  Michael A. Bennett,et al.  Ternary Diophantine Equations via Galois Representations and Modular Forms , 2004, Canadian Journal of Mathematics.

[10]  Guillaume Hanrot,et al.  Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .

[11]  B. Sury On the Diophantine equation x2 + 2 = yn , 2000 .

[12]  M. Le A Note on the Generalized Ramanujan-Nagell Equation , 1995 .

[13]  J. H. E. Cohn,et al.  The Diophantine equation x2+3 = yn , 1993, Glasgow Mathematical Journal.

[14]  W. Ljunggren On the diophantine equation x2+D=4yq , 1971 .

[15]  Diana Savin,et al.  ABOUT A DIOPHANTINE EQUATION , 2009 .

[16]  J. Cohn The diophantine equation $x^2 + C = y^n$, II , 2003 .

[17]  F. S. A. Muriefah,et al.  The diophantine equation x2+3m=yn , 1998 .

[18]  M. Le,et al.  On the diophantine equation $(x^m-1)/(x-1) = y^n$ , 1995 .

[19]  L. Maohua On the number of solutions of the diophantine equation x2+D=pn , 1993 .