Hybridization of rutile TiO₂ (rTiO₂) with g-C₃N₄ quantum dots (CN QDs): An efficient visible-light-driven z-scheme hybridized photocatalyst

[1]  A. Fujishima,et al.  Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup , 2007 .

[2]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[3]  D. Klug,et al.  Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. , 2008, Journal of the American Chemical Society.

[4]  Z. Zou,et al.  Photodegradation performance of g-C3N4 fabricated by directly heating melamine. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[5]  Hui‐Ming Cheng,et al.  Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis , 2016, Advanced materials.

[6]  Jie Huang,et al.  Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method , 2014 .

[7]  Yongfa Zhu,et al.  Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. , 2015, Physical chemistry chemical physics : PCCP.

[8]  Gengfeng Zheng,et al.  Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires. , 2016, ACS applied materials & interfaces.

[9]  Xiaoxiang Xu,et al.  A red metallic oxide photocatalyst. , 2012, Nature materials.

[10]  Akira Fujishima,et al.  TITANIUM DIOXIDE PHOTOCATALYSIS: PRESENT SITUATION AND FUTURE APPROACHES , 2006 .

[11]  Xiao-feng Wu,et al.  Fabrication of TiO2 hollow microspheres using K3PW12O40 as template , 2015 .

[12]  Yu Jiaguo,et al.  Low Temperature Solvent Evaporation-induced Crystallization Synthesis of Nanocrystalline TiO2 Photocatalyst , 2010 .

[13]  Jimmy C. Yu,et al.  Covalent Fixation of Surface Oxygen Atoms on Hematite Photoanode for Enhanced Water Oxidation , 2016 .

[14]  Qian Yang,et al.  In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties , 2016 .

[15]  Xiaofang Li,et al.  Effect of phase structures on the photocatalytic activity of surface fluorinated TiO2 , 2010 .

[16]  Xuxing Chen,et al.  Defective, Porous TiO2 Nanosheets with Pt Decoration as an Efficient Photocatalyst for Ethylene Oxidation Synthesized by a C3N4 Templating Method. , 2016, ACS applied materials & interfaces.

[17]  W. Ho,et al.  Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal , 2015 .

[18]  Liping Li,et al.  Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution , 2014 .

[19]  Zhongbiao Wu,et al.  An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. , 2015, Environmental science & technology.

[20]  K. Lv,et al.  Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4 , 2015 .

[21]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[22]  B. Li,et al.  Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2 , 2015 .

[23]  Jimmy C. Yu,et al.  g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. , 2014, Chemical communications.

[24]  Dingguo Tang,et al.  Fabrication of ZnO/graphene flake-like photocatalyst with enhanced photoreactivity , 2015 .

[25]  Huimin Zhao,et al.  Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation , 2012 .

[26]  W. Ho,et al.  In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. , 2013, ACS applied materials & interfaces.

[27]  Changcun Han,et al.  Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles , 2011 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Hexing Li,et al.  Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis , 2016 .

[30]  Juan Li,et al.  Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst , 2017 .

[31]  Z. Zou,et al.  Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[32]  Jiaguo Yu,et al.  Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst. , 2010, Chemistry, an Asian journal.

[33]  W. Ho,et al.  Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation , 2015 .

[34]  W. Jury,et al.  The role of science in solving the world's emerging water problems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[36]  C. S. Lu,et al.  Different Effects of Fluoride Surface Modification on the Photocatalytic Oxidation of Phenol in Anatase and Rutile TiO2 Suspensions , 2008 .

[37]  Huijun Zhao,et al.  Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. , 2015, Water research.

[38]  C. Miranda,et al.  Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method , 2013 .

[39]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[40]  Jimmy C. Yu,et al.  Enhancing Charge Separation in Metallic Photocatalysts: A Case Study of the Conducting Molybdenum Dioxide , 2016 .

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  P. Glatzel,et al.  High energy resolution X-ray absorption spectroscopy of environmentally relevant lead(II) compounds. , 2009, Inorganic chemistry.

[43]  Jiaguo Yu,et al.  Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles. , 2012, Chemistry, an Asian journal.

[44]  Yang Xia,et al.  Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4 , 2016 .

[45]  Jiaguo Yu,et al.  Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. , 2013, Physical chemistry chemical physics : PCCP.