Fluctuation of photon-releasing with ligand coordination in polyacrylonitrile-based electrospun nanofibers

[1]  Nguyen Thanh Huong,et al.  Luminescent and magnetic properties of multifunctional europium(III) complex based nanocomposite , 2019, Journal of Rare Earths.

[2]  Hongwei Song,et al.  Adjustable multicolor emission from the combination of up-conversion in Tm3+/Tb3+/Yb3+ tri-doped Na5Lu9F32 single crystals , 2019, Optical Materials.

[3]  Nahal Aliheidari,et al.  Electrospun Nanofibers for Label-Free Sensor Applications , 2019, Sensors.

[4]  E. Pun,et al.  Differentiation of photon generation depended on electrospun configuration in Eu3+/Tb3+ doped polyacrylonitrile nanofibers , 2019, Journal of Alloys and Compounds.

[5]  A. Valente,et al.  Energy transfer and multicolour tunable emission of Eu,Tb(PSA)Phen composites , 2019, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[6]  Yan-xin Wang,et al.  Polyvinylpyrrolidone Nanofibers Encapsulating an Anhydrous Preparation of Fluorescent SiO2–Tb3+ Nanoparticles , 2019, Nanomaterials.

[7]  C. Cojocaru,et al.  Novel rare earth (RE-La, Er, Sm) metal doped ZnO photocatalysts for degradation of Congo-Red dye: Synthesis, characterization and kinetic studies. , 2019, Journal of environmental management.

[8]  Najmul Hasan,et al.  Syntheses, crystal structure and photophysical properties of [Sm(dbm)3(impy)] and [Tb(dbm)3(impy)] and their hybrid films , 2019, New Journal of Chemistry.

[9]  Ayesha Kausar Polyacrylonitrile-based nanocomposite fibers: A review of current developments , 2019, Journal of Plastic Film & Sheeting.

[10]  Yuan Zhong,et al.  Photoluminescence properties and energy transfer in a novel Sr8ZnY(PO4)7:Tb3+,Eu3+ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes , 2019, Journal of Materials Chemistry C.

[11]  He Liu,et al.  Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies , 2019, Molecules.

[12]  J. Qiu,et al.  Realizing Visible Light Excitation of Tb3+ via Highly Efficient Energy Transfer from Ce3+ for LED‐Based Applications , 2019, Advanced Optical Materials.

[13]  F. Franconi,et al.  Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic-Inorganic Nanocomposites for Magneto-Scaffolds. , 2019, ACS applied materials & interfaces.

[14]  M. Kochanowicz,et al.  Spectroscopic investigation of Tb(tmhd)3 - Eu(tmhd)3 co-doped poly(methyl methacrylate) fibre , 2019, Optical Materials.

[15]  Y. Zhang,et al.  Synthesis of luminescent CePO4:Tb/Au composite for glucose detection , 2018, Dyes and Pigments.

[16]  Sung Ha Park,et al.  1D Fibers and 2D Patterns Made of Quantum Dot‐Embedded DNA via Electrospinning and Electrohydrodynamic Jet Printing , 2018, Advanced Materials Technologies.

[17]  Chengchun Tang,et al.  Porous boron nitride/rare earth complex hybrids with multicolor tunable photoluminescence , 2018, Journal of Alloys and Compounds.

[18]  Xuguang Liu,et al.  Structure and photoluminescence property of Eu, Tb, Zn-containing macromolecular complex for white light emission , 2018, Optics & Laser Technology.

[19]  S. G. Itankar,et al.  Photoluminescent electrospun europium complex Eu(TTA)3phen embedded polymer blends nanofibers , 2018, Optical Materials.

[20]  Daoheng Sun,et al.  New Insight into Gap Electrospinning: Toward Meter-long Aligned Nanofibers. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[21]  F. Gándara,et al.  Synthesis, structure and magnetic investigations of dinuclear lanthanide complexes based on 2-ethoxycinnamate. , 2018, Dalton transactions.

[22]  Shilong Zhao,et al.  Enhanced luminescence in Tb 3+ ‐doped germanate glass ceramic scintillators containing CaF 2 nanocrystals , 2018, Journal of the American Ceramic Society.

[23]  Y. Long,et al.  Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery , 2018, Chemical Engineering Journal.

[24]  Byoung-Sun Lee,et al.  Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications , 2018, Advanced materials.

[25]  Rui Cheng,et al.  Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers. , 2018, ACS applied materials & interfaces.

[26]  S. Ribeiro,et al.  Luminescent silicone materials containing Eu3+-complexes for photonic applications , 2018 .

[27]  J. Woollins,et al.  Treatment of cadmium(II) and zinc(II) with N2-donor linkages in presence of β-diketone ligand; supported by structural, spectral, theoretical and docking studies , 2018, Inorganica Chimica Acta.

[28]  Wen-Min Wang,et al.  Regulating the luminescent and magnetic properties of rare-earth complexes with β-diketonate coligands , 2018 .

[29]  S. Khatkar,et al.  Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process , 2018, Journal of Fluorescence.

[30]  Shuhong Wang,et al.  Luminescence properties and molecular mechanics calculation of bis-β-diketonate Eu3+ complex/polymer hybrid fibers , 2018 .

[31]  D. Ye,et al.  Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics. , 2018, Small.

[32]  S. Karpagam,et al.  Movement of new direction from conjugated polymer to semiconductor composite polymer nanofiber , 2018 .

[33]  R. O. Freire,et al.  Influence of fluorinated chain length on luminescent properties of Eu3+ β-diketonate complexes , 2018 .

[34]  A. Al-Enizi,et al.  Polymer-Based Electrospun Nanofibers for Biomedical Applications , 2018, Nanomaterials.

[35]  Hung-Ju Yen,et al.  Cyanotriphenylamine-based polyimidothioethers as multifunctional materials for ambipolar electrochromic and electrofluorochromic devices, and fluorescent electrospun fibers , 2018 .

[36]  Yun Wei,et al.  Versatile reactivities of rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand. , 2018, Dalton transactions.

[37]  Zhen Liu,et al.  Magnetic properties and structure of tetranuclear lanthanide complexes based on 8-hydroxylquinoline Schiff base derivative and β-diketone coligand. , 2018, Dalton transactions.

[38]  F. Wang,et al.  Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes , 2018 .

[39]  Yanbin Li,et al.  Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands , 2018 .

[40]  Thokchom Taru Taru Chanu,et al.  Investigation on optical band gap, photoluminescence properties and concentration quenching mechanism of Pb1-x Tb3+xWO4 green-emitting phosphors. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[41]  Hyun‐Seok Kim,et al.  In vitro cytotoxicity activity of novel Schiff base ligand–lanthanide complexes , 2018, Scientific Reports.

[42]  Xilin Li,et al.  From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications , 2017, Progress in Polymer Science.

[43]  Y. Li,et al.  NaYbF 4 :Tb/Eu modified with organic antenna for improving performance of polymer solar cells , 2018 .

[44]  Q. Ma,et al.  Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence , 2018, Journal of Materials Science.

[45]  Hongwei Song,et al.  Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. , 2017, Nano letters.

[46]  Karen De Clerck,et al.  Colorimetric Nanofibers as Optical Sensors , 2017 .

[47]  Wei Zhai,et al.  Efficient Energy Transfer in Terbium Complexes/Porous Boron Nitride Hybrid Luminescent Materials , 2017 .

[48]  Younan Xia,et al.  Electrospun Nanofibers: New Concepts, Materials, and Applications. , 2017, Accounts of chemical research.

[49]  Yihe Zhang,et al.  Composition and Fluorescence of Gadolinium (III) Acetylacetonate Derivatives by Solvothermal Method , 2017 .

[50]  L. Persano,et al.  Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors , 2017 .

[51]  S. Rai,et al.  Acetylsalicylic acid sensitized lasing luminescence of terbium complex in PVA: A case of energy avalanche via 1, 10-Phenanthroline , 2017 .

[52]  G. Guo,et al.  Inorganic-organic hybrid white light phosphors. , 2016, Chemical communications.

[53]  Ying Li,et al.  Tailoring spatial distribution of Eu(TTA)3phen within electrospun polyacrylonitrile nanofibers for high fluorescence efficiency , 2016 .

[54]  M. Liu,et al.  Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers. , 2016, Small.

[55]  Zhonggang Wang,et al.  Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films , 2016, Scientific Reports.

[56]  S. Ribeiro,et al.  Energy transfer process in highly photoluminescent binuclear hydrocinnamate of europium, terbium and gadolinium containing 1,10-phenanthroline as ancillary ligand , 2016 .

[57]  Q. Ma,et al.  Flexible hollow nanofibers: Novel one-pot electrospinning construction, structure and tunable luminescence–electricity–magnetism trifunctionality , 2016 .

[58]  Liping Li,et al.  Synthesis, characteristics and luminescent properties of a new Tb(III) ternary complex applied in near UV-based LED , 2015 .

[59]  S. Wen,et al.  Improved fluorescence properties of core–sheath electrospun nanofibers sensitized by silver nanoparticles , 2015 .

[60]  P. Xi,et al.  Luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex: Morphology and luminescence properties , 2015 .

[61]  S. Rai,et al.  Revelation of the Technological Versatility of the Eu(TTA)3Phen Complex by Demonstrating Energy Harvesting, Ultraviolet Light Detection, Temperature Sensing, and Laser Applications. , 2015, ACS applied materials & interfaces.

[62]  Shihui Li,et al.  Highly isoselective coordination polymerization of ortho-methoxystyrene with β-diketiminato rare-earth-metal precursors. , 2015, Angewandte Chemie.

[63]  E. Jeong,et al.  Luminescent properties of rare earth fully activated apatites, LiRE9(SiO4)6O2 (RE = Ce, Eu, and Tb): site selective crystal field effect. , 2015, Inorganic chemistry.

[64]  F. Ruggieri,et al.  Near-field electrospinning of light-emitting conjugated polymer nanofibers , 2013, Nanoscale.

[65]  Wen‐Chang Chen,et al.  Morphology and Photophysical Properties of Light-Emitting Electrospun Nanofibers Prepared from Poly(fluorene) Derivative/PMMA Blends , 2007 .

[66]  Fuyou Li,et al.  The Effect of Different Neutral Ligands on Photoluminescence and Electroluminescence Properties of Ternary Terbium Complexes , 2004 .

[67]  Kongzhang Yang,et al.  Fluorescence lifetime and energy transfer of rare earth β-diketone complexes in organized molecular films , 2000 .

[68]  Chunhui Huang,et al.  Photoluminescence and electroluminescence of a series of terbium complexes , 1999 .

[69]  J. Ni,et al.  Intramolecular energy transfer mechanism between ligands in ternary rare earth complexes with aromatic carboxylic acids and 1,10-phenanthroline , 1998 .

[70]  P. Littlefair The luminous efficacy of daylight: a review , 1985 .

[71]  Cgb Mitchell,et al.  A REVIEW OF CURRENT DEVELOPMENTS , 1974 .

[72]  T. D. Brown,et al.  Factors affecting the quantum efficiencies of fluorescent terbium(III) chelates in the solid state , 1973 .

[73]  W. F. Sager,et al.  Substituent Effects on Intramolecular Energy Transfer. I. Absorption and Phosphorescence Spectra of Rare Earth β-Diketone Chelates , 1965 .

[74]  R. C. Macridis A review , 1963 .