Mathematical modelling of wave energy converters: A review of nonlinear approaches

The wave energy sector has made and is still doing a great effort in order to open up a niche in the energy market, working on several and diverse concepts and making advances in all aspects towards more efficient technologies. However, economic viability has not been achieved yet, for which maximisation of power production over the full range of sea conditions is crucial. Precise mathematical models are essential to accurately reproduce the behaviour, including nonlinear dynamics, and understand the performance of wave energy converters. Therefore, nonlinear models must be considered, which are required for power absorption assessment, simulation of devices motion and model-based control systems. Main sources of nonlinear dynamics within the entire chain of a wave energy converter - incoming wave trains, wave-structure interaction, power take-off systems or mooring lines- are identified, with especial attention to the wave-device hydrodynamic interaction, and their influence is studied in the present paper for different types of converters. In addition, different approaches to model nonlinear wave-device interaction are presented, highlighting their advantages and drawbacks. Besides the traditional Navier-Stokes equations or potential flow methods, ‘new’ methods such as system-identification models, smoothed particle hydrodynamics or nonlinear potential flow methods are analysed.

[1]  Bruce J. West,et al.  A new numerical method for surface hydrodynamics , 1987 .

[2]  Trevor Whittaker,et al.  The opportunities and limitations of using CFD in the development of wave energy converters , 2012 .

[3]  Aurélien Babarit,et al.  Numerical benchmarking study of a selection of wave energy converters , 2012 .

[4]  Enrique Vidal,et al.  Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter , 2013 .

[5]  D. Bull,et al.  Methodology for creating nonaxisymmetric WECs to screen mooring designs using a Morison Equation approach , 2012, 2012 Oceans.

[6]  P. Frigaard,et al.  Performance Evaluation of the Wavestar Prototype , 2011 .

[7]  Matthew Folley,et al.  The performance of a wave energy converter in shallow water , 2005 .

[8]  Aurélien Babarit,et al.  Assessment of Viscous Damping via 3D-CFD Modelling of a Floating Wave Energy Device , 2015 .

[9]  Mofreh H. Hamed,et al.  A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser , 2011 .

[10]  Curtis Smith,et al.  Large-scale solitary wave simulation with implicit incompressible SPH , 2016 .

[11]  Francesco Ferri,et al.  Validation of a Wave-Body Interaction Model by Experimental Tests , 2013 .

[12]  A. Babarit,et al.  Effect of Viscous Forces on the Performance of a Surging Wave Energy Converter , 2012 .

[13]  A. Ploeg,et al.  Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics , 2011 .

[14]  Dick K. P. Yue,et al.  A high-order spectral method for the study of nonlinear gravity waves , 1987, Journal of Fluid Mechanics.

[15]  P. E. Guillerm,et al.  RANSE with Free Surface Computations around fixed and Free DTMB 5415 model in Still Water and in Waves , 2005 .

[16]  Subrata Chakrabarti Physical Model Testing of Floating Offshore Structures , 1999 .

[17]  Rico Hjerm Hansen,et al.  Simulation of Utilisation of Pressure Propagation for Increased Efficiency of Secondary Controlled Discrete Displacement Cylinders , 2012 .

[18]  Paulo Roberto de Freitas Teixeira,et al.  Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations , 2013 .

[19]  Javier L. Lara,et al.  Modelling of velocity and turbulence fields around and within low-crested rubble-mound breakwaters , 2005 .

[20]  Lars Johanning,et al.  Mooring systems for wave energy converters: A review of design issues and choices , 2004 .

[21]  Longbin Tao,et al.  Heave motion suppression of a spar with a heave plate , 2004 .

[22]  John D. Fenton,et al.  A Fourier approximation method for steady water waves , 1981, Journal of Fluid Mechanics.

[23]  Song-Ping Zhu,et al.  Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters , 2014 .

[24]  Philip L.-F. Liu,et al.  FREE SURFACE TRACKING METHODS AND THEIR APPLICATIONS TO WAVE HYDRODYNAMICS , 1999 .

[25]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[26]  Scott Beatty,et al.  Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter , 2014 .

[27]  António F.O. Falcão,et al.  Wave energy utilization: A review of the technologies , 2010 .

[28]  J. Gilloteaux,et al.  Mouvements de grande amplitude d'un corps flottant en fluide parfait. Application à la récupération de l'énergie des vagues. , 2007 .

[29]  Ye Li,et al.  A synthesis of numerical methods for modeling wave energy converter-point absorbers , 2012 .

[30]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[31]  John Ringwood,et al.  Numerical wave tank identification of nonlinear discrete timehydrodynamic models , 2014 .

[32]  Peter Frigaard,et al.  Prototype Testing of the Wave Energy Converter Wave Dragon , 2006 .

[33]  F. Menter,et al.  Ten Years of Industrial Experience with the SST Turbulence Model , 2003 .

[34]  Mohieddine Jelali,et al.  Hydraulic Servo-systems: Modelling, Identification and Control , 2012 .

[35]  John D. Fenton,et al.  A high-order cnoidal wave theory , 1979, Journal of Fluid Mechanics.

[36]  Leigh McCue,et al.  Free-surface flow interactions with deformable structures using an SPH–FEM model , 2012 .

[37]  J. Falnes Ocean Waves and Oscillating Systems , 2002 .

[38]  D. V. Evans,et al.  A submerged cylinder wave energy converter with internal sloshing power take off , 2014 .

[39]  P. Cleary,et al.  Smooth particle hydrodynamics: status and future potential , 2007 .

[40]  Anke Dreher,et al.  Dynamic Stability Of Bodies Containing Fluid , 2016 .

[41]  M. Folley Numerical modelling of wave energy converters , 2016 .

[42]  John Ringwood,et al.  Linear parametric hydrodynamic models for ocean wave energy converters identified from numerical wave tank experiments , 2015 .

[43]  Alan Henry,et al.  Determination of Non-linear Damping Coefficients of bottom-hinged Oscillating Wave Surge Converters Using Numerical Free Decay Tests , 2014 .

[44]  Ding Xin,et al.  On criterions for smoothed particle hydrodynamics kernels in stable field , 2005 .

[45]  John Grue,et al.  An efficient model for three-dimensional surface wave simulations. Part II: Generation and absorption , 2005 .

[46]  Bertrand Alessandrini,et al.  Recent Advances Towards the Viscous Flow Simulation of Ships Manoeuvering in Waves , 2008 .

[47]  Christian Ulrich,et al.  Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems , 2013 .

[48]  Krish Thiagarajan,et al.  An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column , 2007 .

[49]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  John Ringwood,et al.  Optimising Numerical Wave Tank Tests for the Parametric Identification of Wave Energy Device Models , 2015 .

[51]  João C.C. Henriques,et al.  Dynamics and optimization of the OWC spar buoy wave energy converter , 2012 .

[52]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[53]  Bradley J. Buckham,et al.  Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves , 2015 .

[54]  B. Rogers,et al.  State-of-the-art of classical SPH for free-surface flows , 2010 .

[55]  Michel Benoit,et al.  Comparison of Fully Nonlinear and Weakly Nonlinear Potential Flow Solvers for the Study of Wave Energy Converters Undergoing Large Amplitude Motions , 2014 .

[56]  Frédéric Dias,et al.  Numerical Simulation of Wave Interaction With an Oscillating Wave Surge Converter , 2013 .

[57]  Y. Torre-Enciso,et al.  Mutriku Wave Power Plant : from the thinking out to the reality , 2009 .

[58]  Michel Visonneau,et al.  An interface capturing method for free-surface hydrodynamic flows , 2007 .

[59]  T. Barnett,et al.  Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) , 1973 .

[60]  Trevor Whittaker,et al.  The Characteristics of Wave Impacts on an Oscillating Wave Surge Converter , 2013 .

[61]  Inigo J. Losada,et al.  Experimentally Calibrated Time-Domain Numerical Model for a Fixed OWC Device , 2013 .

[62]  Volker Bertram,et al.  Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 workshop , 2003 .

[63]  Michel Guglielmi,et al.  Declutching control of a wave energy converter , 2009 .

[64]  Qingping Zou,et al.  Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device , 2012 .

[65]  Beom-Soo Hyun,et al.  Application of Numerical Wave Tank to OWC Air Chamber for Wave Energy Conversion , 2008 .

[66]  Benedict D. Rogers,et al.  Investigation of Wave-Structure Interaction Using State of the Art CFD Techniques , 2014 .

[67]  Marcelo A. S. Neves,et al.  On unstable ship motions resulting from strong non-linear coupling , 2006 .

[68]  António F.O. Falcão,et al.  Nonlinear dynamics of a tightly moored point-absorber wave energy converter , 2013 .

[69]  João C.C. Henriques,et al.  Oscillating-water-column wave energy converters and air turbines: A review , 2016 .

[70]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[71]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[72]  John Ringwood,et al.  Computationally efficient nonlinear Froude–Krylov force calculations for heaving axisymmetric wave energy point absorbers , 2017 .

[73]  J. O. Flower,et al.  Measurement of energy losses in oscillatory flow through a pipe exit , 1980 .

[74]  Javier L. Lara,et al.  Numerical analysis of wave overtopping of rubble mound breakwaters , 2008 .

[75]  Aurélien Babarit,et al.  The SEAREV Wave Energy Converter , 2005 .

[76]  Longbin Tao,et al.  Hydrodynamic performance of solid and porous heave plates , 2008 .

[77]  C. Bowden,et al.  Waves , 2011 .

[78]  Giorgio Bacelli,et al.  Nonlinear optimal wave energy convertercontrol with application to a ap-typedevice , 2014 .

[79]  Alan Henry,et al.  A Two Dimensional Experimental Investigation of Slamming of an Oscillating Wave Surge Converter , 2014 .

[80]  Bernard Molin,et al.  Hydrodynamique des Structures Offshore , 2012 .

[81]  Charles L. Bretschneider,et al.  Wave variability and wave spectra for wind generated gravity waves , 1959 .

[82]  Stephan T. Grilli,et al.  A fully non‐linear model for three‐dimensional overturning waves over an arbitrary bottom , 2001 .

[83]  Lars Johanning,et al.  Measurements of static and dynamic mooring line damping and their importance for floating WEC devices , 2007 .

[84]  Bertrand Alessandrini,et al.  2D Nonlinear Diffraction Around Free Surface Piercing Body in a Viscous Numerical Wave Tank , 1999 .

[85]  Bertrand Alessandrini,et al.  Simulation of three‐dimensional unsteady viscous free surface flow around a ship model , 1994 .

[86]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[87]  Chan Ghee Koh,et al.  A new particle method for simulation of incompressible free surface flow problems , 2012 .

[88]  D. Evans,et al.  Wave energy extraction by coupled resonant absorbers , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[89]  Trevor Whittaker,et al.  Hydrodynamic Loading on a Bottom Hinged Oscillating Wave Surge Converter , 2012 .

[90]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[91]  Markus Mueller,et al.  Analysis, design and testing of a novel direct-drive wave energy converter system , 2013 .

[92]  M. Pontes,et al.  ASSESSING THE GLOBAL WAVE ENERGY POTENTIAL , 2010 .

[93]  John V. Ringwood,et al.  Identification of Wave Energy Device Models From Numerical Wave Tank Data—Part 2: Data-Based Model Determination , 2016, IEEE Transactions on Sustainable Energy.

[94]  T. Setoguchi,et al.  Air Turbines for Wave Energy Conversion , 2012 .

[95]  D. R. Evans,et al.  Hydrodynamics of ocean wave-energy utilization , 1986 .

[96]  Paulo Alexandre Justino,et al.  A time domain analysis of arrays of floating point-absorber wave energy converters including the effect of nonlinear mooring forces , 2010 .

[97]  Giorgio Bacelli,et al.  A non-linear potential model to predict large-ampli tudes-motions: application to a multi-body wave energy converter. , 2008 .

[98]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[99]  Inigo J. Losada,et al.  Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device , 2014 .

[100]  Trevor Whittaker,et al.  Performance of the LIMPET wave power plant - prediction, measurement and potential: 5th European Wave Energy Conference Proceedings. 17-20 September 2003 , 2003 .

[101]  Matthew Folley,et al.  The design of small seabed-mounted bottom-hinged wave energy converters , 2007 .

[102]  Emilio F. Campana,et al.  A level set technique applied to unsteady free surface flows , 2001 .

[103]  John Ringwood,et al.  Nonlinear Hydrodynamic Force Relevance forHeaving Point Absorbers and Oscillating SurgeConverters , 2016 .

[104]  Nicholas Jenkins,et al.  Optimisation of a clutch-rectified power take off system for a heaving wave energy device in irregular waves with experimental comparison , 2014 .

[105]  Inigo J. Losada,et al.  Identification of state-space coefficients for oscillating water columns using temporal series , 2014 .

[106]  Yi-Hsiang Yu,et al.  Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system , 2013 .

[107]  John Ringwood,et al.  A Nonlinear Extension for Linear Boundary Element Methods in Wave Energy Device Modelling , 2012 .

[108]  Marco Alves,et al.  Non-Linear And Viscous Analisys of the Diffraction Flow In Owc Wave Power Plants , 2006 .

[109]  Gregorio Iglesias,et al.  Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model , 2014 .

[110]  Yi-Chih Chow,et al.  THEORETICAL ANALYSIS AND SPH SIMULATION FOR THE WAVE ENERGY CAPTURED BY A BOTTOM-HINGED OWSC , 2015 .

[111]  David Le Touzé,et al.  TIME DOMAIN SIMULATION OF NONLINEAR WATER WAVES USING SPECTRAL METHODS , 2010 .

[112]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[113]  Javier L. Lara,et al.  RANS modelling applied to random wave interaction with submerged permeable structures , 2006 .

[114]  P. McKeever,et al.  Hydrodynamic and electromechanical simulation of a snapper based wave energy converter , 2010, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society.

[115]  J. N. Newman Second-Order Diffraction in Short Waves , 2005 .

[116]  John D. Fenton,et al.  Numerical methods for nonlinear waves , 2003 .

[117]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[118]  W. Pierson,et al.  A proposed spectral form for fully developed wind seas based on the similarity theory of S , 1964 .

[119]  Šime Malenica,et al.  Second-order water wave diffraction by an array of vertical cylinders , 1999, Journal of Fluid Mechanics.

[120]  Bertrand Alessandrini,et al.  A fully coupled Navier–Stokes solver for calculation of turbulent incompressible free surface flow past a ship hull , 1999 .

[121]  Alan Henry,et al.  How does Oyster work? The simple interpretation of Oyster mathematics , 2014 .

[122]  M. N. Sahinkaya,et al.  A review of wave energy converter technology , 2009 .

[123]  J. Chick,et al.  European Wave and Tidal Energy Conference , 2009 .

[124]  E. Spooner,et al.  Analysis, design and testing of a novel direct-drive wave energy converter system , 2013 .

[125]  Alan Henry,et al.  Wave interaction with an Oscillating Wave Surge Converter. Part II: Slamming☆ , 2016 .

[126]  Alan Henry,et al.  Wave interaction with an oscillating wave surge converter, Part I: Viscous effects , 2015 .

[127]  Jennie Kapell Analysis of the Inner Flow in the Wave Energy Converter WaveTube , 2012 .

[128]  Lars Johanning,et al.  Interaction Between Mooring Line Damping and Response Frequency as a Result of Stiffness Alteration in Surge , 2006 .

[129]  Shunqi Pan,et al.  An investigation of the impacts of climate change on wave energy generation: The Wave Hub, Cornwall, UK , 2011 .

[130]  Bo Terp Paulsen,et al.  An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders , 2014 .

[131]  A. Henry,et al.  The development of Oyster - a shallow water surging wave energy converter , 2007 .

[132]  Craig Meskell,et al.  Investigation on Parametrically Excited Motions of Point Absorbers in Regular Waves , 2014 .

[133]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[134]  Louise O'Boyle,et al.  The Value of Full Scale Prototype Data - Testing Oyster 800 at EMEC, Orkney , 2015 .

[135]  Richard Crozier,et al.  Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion , 2014 .

[136]  Bradley J. Buckham,et al.  ISPH modelling of an oscillating wave surge converter using an OpenMP-based parallel approach , 2016 .

[137]  Aurélien Babarit,et al.  On the numerical modelling of the non-linear behaviour of a wave energy converter , 2009 .

[138]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[139]  John Ringwood,et al.  A Review of Wave-to-Wire Models for Wave Energy Converters , 2016 .

[140]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[141]  Michael J. Lawson,et al.  Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool , 2014 .

[142]  Murray Rudman,et al.  Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows , 2012 .

[143]  Jonas Pedersen,et al.  Capturing Dynamic Effects in Ship Tanks - A coupling between HydroD™ and OpenFOAM® , 2011 .

[144]  Ross Henderson,et al.  Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter , 2006 .

[145]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[146]  A. Benalia,et al.  Ocean wave converters: State of the art and current status , 2010, 2010 IEEE International Energy Conference.

[147]  Aurélien Babarit,et al.  Développement d’un outil de simulation numérique basé sur l’approche "Weak-Scatterer" pour l’étude des systèmes houlomoteurs en grands mouvements , 2012 .

[148]  Xin Liu,et al.  Numerical simulation of a heave-only floating OWC (oscillating water column) device , 2014 .

[149]  John Ringwood,et al.  Nonlinear Froude-Krylov force modelling for two heaving wave energy point absorbers , 2015 .

[150]  Aurélien Babarit,et al.  RANS Simulations of a Calm Buoy in Regular and Irregular Seas using the SWENSE Method , 2011 .

[151]  Mike Mekhiche,et al.  Ocean Power Technologies Powerbuoy®: System‐Level Design, Development and Validation Methodology , 2014 .

[152]  Christian Windt,et al.  Development and validation of a procedure for numerical vibration analysis of an oscillating wave surge converter , 2016 .

[153]  Ashkan Rafiee SPH modeling of multi-phase and energetic flows , 2011 .

[154]  Rico Hjerm Hansen,et al.  Control of a 420 kN Discrete Displacement Cylinder Drive for the Wavestar Wave Energy Converter , 2014 .

[155]  Hyun Soo Shin,et al.  A Study On Mathieu-type Instability of Conventional Spar Platform In Regular Waves , 2005 .

[156]  Ashkan Rafiee,et al.  Numerical Prediction of Extreme Loads on the CETO Wave Energy Converter , 2015 .

[157]  S. Salter Wave power , 1974, Nature.

[158]  Craig Meskell,et al.  Investigation on Parametrically Excited Motions of Point Absorbers in Regular Waves , 2014 .

[159]  W. Cummins THE IMPULSE RESPONSE FUNCTION AND SHIP MOTIONS , 2010 .