Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits.

Quantum computers must be able to function in the presence of decoherence. The simplest strategy for decoherence reduction is dynamical decoupling (DD), which requires no encoding overhead and works by converting quantum gates into decoupling pulses. Here, using the IBM and Rigetti platforms, we demonstrate that the DD method is suitable for implementation in today's relatively noisy and small-scale cloud-based quantum computers. Using DD, we achieve substantial fidelity gains relative to unprotected, free evolution of individual superconducting transmon qubits. To a lesser degree, DD is also capable of protecting entangled two-qubit states. We show that dephasing and spontaneous emission errors are dominant in these systems, and that different DD sequences are capable of mitigating both effects. Unlike previous work demonstrating the use of quantum error correcting codes on the same platforms, we make no use of postselection and hence report unconditional fidelity improvements against natural decoherence.

[1]  Daniel A. Lidar,et al.  Optimized dynamical decoupling via genetic algorithms , 2013 .

[2]  M. S. Zubairy,et al.  Quantum optics: Quantum theory of the laser – density operator approach , 1997 .

[3]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[4]  L. Lamata,et al.  Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience , 2016, 1611.07851.

[5]  T. Gullion,et al.  New, compensated Carr-Purcell sequences , 1990 .

[6]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[7]  Byung-Soo Choi,et al.  Analysis of physical requirements for simple three-qubit and nine-qubit quantum error correction on quantum-dot and superconductor qubits , 2017 .

[8]  Thomas Halfmann,et al.  Arbitrarily Accurate Pulse Sequences for Robust Dynamical Decoupling. , 2016, Physical review letters.

[9]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[10]  W. Marsden I and J , 2012 .

[11]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[12]  Simon J. Devitt,et al.  Performing Quantum Computing Experiments in the Cloud , 2016, 1605.05709.

[13]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[14]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[15]  Daniel A. Lidar,et al.  Quantum Computing in the Presence of Spontaneous Emission , 2003 .

[16]  Sebastian Deffner,et al.  Demonstration of entanglement assisted invariance on IBM's quantum experience , 2016, Heliyon.

[17]  S. Wehner,et al.  Entropic uncertainty and measurement reversibility , 2015, 1511.00267.

[18]  S. Barnett,et al.  Philosophical Transactions of the Royal Society A : Mathematical , 2017 .

[19]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[20]  Michael J. Biercuk,et al.  Robustness of composite pulses to time-dependent control noise , 2014, 1402.5174.

[21]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[22]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[23]  Ren-Bao Liu,et al.  Protection of quantum systems by nested dynamical decoupling , 2010, 1006.1601.

[24]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[25]  Jiangbin Gong,et al.  Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences , 2010 .

[26]  Daniel A. Lidar,et al.  Optimally combining dynamical decoupling and quantum error correction , 2012, Scientific Reports.

[27]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[28]  Alexandre M. Souza,et al.  Robust dynamical decoupling , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[30]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[31]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[32]  Andrew W. Cross,et al.  Demonstration of quantum advantage in machine learning , 2015, npj Quantum Information.

[33]  Physical Review Letters 63 , 1989 .

[34]  G. Guo,et al.  Suppressing environmental noise in quantum computation through pulse control , 1999 .

[35]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[36]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[37]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[38]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[39]  Daniel A. Lidar,et al.  Quantum Error Correction: Applications and implementations , 2013 .

[40]  Daniel A. Lidar,et al.  Near-optimal dynamical decoupling of a qubit. , 2009, Physical review letters.

[41]  Daniel A. Lidar,et al.  Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy [Phys. Rev. A 68 , 022322 (2003)] , 2005 .

[42]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[43]  Daniel A. Lidar,et al.  Distance bounds on quantum dynamics , 2008, 0803.4268.

[44]  D. Lidar,et al.  Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences , 2006, quant-ph/0607086.

[45]  John Preskill,et al.  Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.

[46]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[47]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.