A direct design procedure for linear state functional observers

We propose a constructive procedure to design a Luenberger observer to estimate a linear multiple linear state functional for a linear time-invariant system. Among other features the proposed design algorithm is not based on the solution of a Sylvester equation nor on the use of canonical state space forms. The design is based on the solution set of a linear equation and a realization method. The consistency of this equation and the stability of the observer can be used as a functional observability test.

[1]  S. K. Korovin,et al.  Minimum-order functional observers , 2010 .

[2]  Tyrone Fernando,et al.  A procedure for designing linear functional observers , 2013, Appl. Math. Lett..

[3]  U. Helmke,et al.  On the parametrization of conditioned invariant subspaces and observer theory , 2001 .

[4]  Tyrone Fernando,et al.  Functional Observability and the Design of Minimum Order Linear Functional Observers , 2010, IEEE Transactions on Automatic Control.

[5]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[6]  Hieu Trinh,et al.  Reduced-order linear functional observer for linear systems , 1999 .

[7]  H. Trinh,et al.  Functional Observers for Dynamical Systems , 2011 .

[8]  Tyrone Fernando,et al.  Functional Observability , 2010, 2010 Fifth International Conference on Information and Automation for Sustainability.

[9]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[10]  Mohamed Darouach Existence and design of functional observers for linear systems , 2000, IEEE Trans. Autom. Control..

[11]  Chia-Chi Tsui An overview of the applications and solutions of a fundamental matrix equation pair , 2004, J. Frankl. Inst..

[12]  Chia-Chi Tsui A new algorithm for the design of multifunctional observers , 1985, IEEE Transactions on Automatic Control.

[13]  H. Sirisena Minimal-order observers for linear functions of a state vector† , 1979 .

[14]  B. Gopinath On the control of linear multiple input-output systems , 1971 .

[15]  Saeid Nahavandi,et al.  Algorithms for designing reduced-order functional observers of linear systems , 2008 .

[16]  D. Luenberger Observers for multivariable systems , 1966 .

[17]  S.D.G. Cumming Design of observers of reduced dynamics , 1969 .

[18]  Frédéric Rotella,et al.  Minimal single linear functional observers for linear systems , 2011, Autom..

[19]  S. K. Korovin,et al.  State Observers for Linear Systems with Uncertainty , 2009 .

[20]  T. Bullock,et al.  Design of minimal order stable observers for linear functions of the state via realization theory , 1975 .

[21]  Tyrone Fernando,et al.  Numerical implementation of a Functional Observability algorithm: A Singular Value Decomposition Approach , 2010, 2010 IEEE Asia Pacific Conference on Circuits and Systems.

[22]  Chia-Chi Tsui What is the minimum function observer order , 1998, 2003 European Control Conference (ECC).

[23]  Thomas Kailath,et al.  Linear Systems , 1980 .

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  D. Williamson,et al.  Design of low-order observers for linear feedback control laws , 1972 .

[26]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[27]  Tyrone Fernando,et al.  Existence Conditions for Functional Observability From an Eigenspace Perspective , 2011, IEEE Transactions on Automatic Control.