Bioconversion technologies of crude glycerol to value added industrial products

Highlights • Crude glycerol is a byproduct of biodiesel industry.• Crude glycerol is a valuable source for different valuable industrial products.• Bioconversion of glycerol is a sustainable approach.• This makes revenue to biodiesel industries and to overall economy of the biodiesel process.

[1]  J. Seppälä,et al.  Bioconversion of Commercial and Waste Glycerol into Value-AddedPolyhydroxyalkanoates by Bacterial Strains , 2014 .

[2]  Xueli Zhang,et al.  Fermentation of Glycerol to Succinate by Metabolically Engineered Strains of Escherichia coli , 2010, Applied and Environmental Microbiology.

[3]  Satoshi Ohtake,et al.  Trehalose: current use and future applications. , 2011, Journal of pharmaceutical sciences.

[4]  C. Posten,et al.  Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. , 1995, Journal of biotechnology.

[5]  J. Contiero,et al.  Glycerol: a promising and abundant carbon source for industrial microbiology. , 2009, Biotechnology advances.

[6]  P. Westermann,et al.  Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum , 2012, Journal of Industrial Microbiology & Biotechnology.

[7]  M. Karp,et al.  Bioconversion of crude glycerol from biodiesel production to hydrogen , 2012 .

[8]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[9]  Maria Francesca Milazzo,et al.  Brassica biodiesels: Past, present and future , 2013 .

[10]  Klaus-Dieter Vorlop,et al.  High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a , 2011, Applied Microbiology and Biotechnology.

[11]  Francesc Medina,et al.  Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp , 2013, Biotechnology progress.

[12]  Zhiyou Wen,et al.  Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. , 2008, Journal of agricultural and food chemistry.

[13]  Jung-Kul Lee,et al.  Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. , 2015, International journal of biological macromolecules.

[14]  J. Ley,et al.  The status of the generic name Gluconobacter , 1970 .

[15]  Philippe Soucaille,et al.  Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. , 2005, Metabolic engineering.

[16]  Yann Le Bihan,et al.  Microbial hydrogen production by bioconversion of crude glycerol: A review , 2012 .

[17]  Wael Sabra,et al.  Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation , 2014, Applied Microbiology and Biotechnology.

[18]  Tatsuo Yagishita,et al.  Microbial production of hydrogen and ethanol from glycerol‐containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine , 2007, Biotechnology and bioengineering.

[19]  V. Rodríguez,et al.  Design and implementation of a high yield production system for recombinant expression of peptides , 2014, Microbial Cell Factories.

[20]  Shan-Jing Yao,et al.  Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae , 2006 .

[21]  S. Papanikolaou,et al.  Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil , 2008 .

[22]  Robert W. M. Pott,et al.  Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds. , 2013, Bioresource technology.

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  J. W. Blackburn,et al.  Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. , 2010, Bioresource technology.

[25]  Sarat Babu Imandi,et al.  Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design , 2007 .

[26]  Hong Liu,et al.  Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products , 2013 .

[27]  J. Andrade,et al.  Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity , 2005, Journal of Industrial Microbiology and Biotechnology.

[28]  Hyun Shik Yun,et al.  Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. , 2011, Journal of microbiology and biotechnology.

[29]  Seraphim Papanikolaou,et al.  Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. , 2010 .

[30]  Javier A. Linares-Pastén,et al.  Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes. , 2015, Bioresource technology.

[31]  M. Ganesh,et al.  Effective production of low crystallinity Poly(3-hydroxybutyrate) by recombinant E. coli strain JM109 using crude glycerol as sole carbon source. , 2015, Bioresource technology.

[32]  Xiomar Gómez,et al.  Hydrogen Production from Glycerol in a Membraneless Microbial Electrolysis Cell , 2009 .

[33]  Seraphim Papanikolaou,et al.  Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. , 2013, Journal of biotechnology.

[34]  Zhiyong Jason Ren,et al.  Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. , 2014, New biotechnology.

[35]  A. Devaraj,et al.  Biopolymer production by Bacterial Species using Glycerol , a byproduct of biodiesel , 2013 .

[36]  C. Nakamura,et al.  Metabolic engineering for the microbial production of 1,3-propanediol. , 2003, Current opinion in biotechnology.

[37]  Barbara Żarowska,et al.  Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation , 2009 .

[38]  Jo‐Shu Chang,et al.  Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria , 2013 .

[39]  Bruce E Logan,et al.  Enhanced hydrogen and 1,3‐propanediol production from glycerol by fermentation using mixed cultures , 2009, Biotechnology and bioengineering.

[40]  Vijayanand S. Moholkar,et al.  Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite , 2013 .

[41]  Craig Frear,et al.  A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation , 2007 .

[42]  Seraphim Papanikolaou,et al.  Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species , 2011 .

[43]  Seraphim Papanikolaou,et al.  Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. , 2009 .

[44]  C. Kim,et al.  Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. , 2011, Bioresource technology.

[45]  K. Zhao,et al.  Microbial Conversion of Glycerol to 1,3-Propanediol by an Engineered Strain of Escherichia coli , 2009, Applied and Environmental Microbiology.

[46]  Ramon Gonzalez,et al.  Anaerobic Fermentation of Glycerol in Paenibacillus macerans: Metabolic Pathways and Environmental Determinants , 2009, Applied and Environmental Microbiology.

[47]  Dehua Liu,et al.  Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid , 2009 .

[48]  A. Rescifina,et al.  Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. , 2014, International journal of biological macromolecules.

[49]  R. Gonzalez,et al.  Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. , 2008, Metabolic engineering.

[50]  Guang Yang,et al.  Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions , 2007, Applied Microbiology and Biotechnology.

[51]  R. K. Saxena,et al.  A novel approach for biobutanol production by Clostridium acetobutylicum using glycerol: a low cost substrate. , 2014 .

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  Shangtian Yang,et al.  Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici , 2009 .

[54]  A. Bories,et al.  Effects of Acetate and Butyrate During Glycerol Fermentation by Clostridium butyricum , 2001, Current Microbiology.

[55]  Pinki Anand,et al.  A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. , 2012, New biotechnology.

[56]  P. Hallenbeck,et al.  High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. , 2009, Bioresource technology.

[57]  Wim Soetaert,et al.  Citrobacter werkmanii, a new candidate for the production of 1,3-propanediol: strain selection and carbon source optimization , 2012 .

[58]  X. Xing,et al.  Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol , 2011 .

[59]  R. Gonzalez,et al.  Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. , 2007, Current opinion in biotechnology.

[60]  Brian J. Kerr,et al.  NUTRITIONAL VALUE OF CRUDE GLYCERIN FOR NONRUMINANTS , 2007 .

[61]  M. Xian,et al.  Microbial production of short chain diols , 2014, Microbial Cell Factories.

[62]  P. Westermann,et al.  Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol , 2012, AMB Express.

[63]  Ming Liu,et al.  Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. , 2006, Metabolic engineering.

[64]  C. Cardona,et al.  Trends in biotechnological production of fuel ethanol from different feedstocks. , 2008, Bioresource technology.

[65]  Bijan Choudhury,et al.  Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions , 2012, Journal of Industrial Microbiology & Biotechnology.

[66]  H. Woo,et al.  High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1 , 2015, Biotechnology for Biofuels.

[67]  Zhiyou Wen,et al.  Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. , 2009, Journal of agricultural and food chemistry.

[68]  S. Papanikolaou,et al.  Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica , 2009 .

[69]  A. Stipanovic,et al.  Production and characterization of poly‐3‐hydroxybutyrate from biodiesel‐glycerol by Burkholderia cepacia ATCC 17759 , 2009, Biotechnology progress.

[70]  Wolf-Dieter Deckwer,et al.  Microbial conversion of glycerol to 1,3-propanediol , 1995 .

[71]  Bruce E. Logan,et al.  High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells , 2009 .

[72]  Tomasz Brylewski,et al.  Towards a hydrogen economy in Poland , 2013 .

[73]  B. Cheirsilp,et al.  Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids , 2011 .