62 95 v 2 [ m at hph ] 1 M ay 2 01 3 EMERGENT QUANTUM MECHANICS AS A THERMAL ENSEMBLE

It has been argued that gravity acts dissipatively on quantu m–mechanical systems, inducing thermal fluctuations that become indistingu ishable from quantum fluctuations. This has led some authors to demand that some form o ti e irreversibility be incorporated into the formalism of quantum mechanics. As a t ool towards this goal we propose a thermodynamical approach to quantum mechanics, b ased on Onsager’s classical theory of irreversible processes and on Prigogine’s n onu itary transformation theory. An entropy operator replaces the Hamiltonian as the gen erator of evolution. The canonically conjugate variable corresponding to the entro py is a dimensionless evolution parameter. Contrary to the Hamiltonian, the entropy op erator is not a conserved Noether charge. Our construction succeeds in implementing gravitationally–induced irreversibility in the quantum theory.

[1]  Yelena Zavalishina Gravity. , 2020, Canadian family physician Medecin de famille canadien.

[2]  D. Leith,et al.  Observation of Time-Reversal Violation in the B[superscript 0] Meson System , 2012 .

[3]  G. Hooft The emergence of quantum mechanics , 2012 .

[4]  P. F. Córdoba,et al.  Emergent quantum mechanics as a classical, irreversible thermodynamics , 2012, 1206.4941.

[5]  L. Smolin A Real Ensemble Interpretation of Quantum Mechanics , 2011, 1104.2822.

[6]  T. Padmanabhan Lessons from classical gravity about the quantum structure of spacetime , 2010, 1012.4476.

[7]  B. Hu GRAVITY AND NONEQUILIBRIUM THERMODYNAMICS OF CLASSICAL MATTER , 2010, 1010.5837.

[8]  C. Rovelli,et al.  Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’ , 2010, 1005.2985.

[9]  T. Padmanabhan,et al.  Thermodynamical aspects of gravity: new insights , 2010 .

[10]  E. Verlinde,et al.  On the origin of gravity and the laws of Newton , 2010, 1001.0785.

[11]  C. Wetterich Quantum mechanics from classical statistics , 2009, 0906.4919.

[12]  H. Elze Symmetry aspects in emergent quantum mechanics , 2009 .

[13]  Fabio Scardigli,et al.  Can quantum mechanics be an emergent phenomenon , 2009, 0901.3907.

[14]  Domenico Giulini,et al.  The Physical Basis of the Direction of Time , 2008 .

[15]  H. Elze The Attractor and the Quantum States , 2008, 0806.3408.

[16]  Gerard 't Hooft,et al.  Emergent quantum mechanics and emergent symmetries , 2007, 0707.4568.

[17]  W. H. Jeu,et al.  Structure and fluctuations of smectic membranes , 2003 .

[18]  A. Faraggi,et al.  Equivalence principle, higher-dimensional Möbius group and the hidden antisymmetric tensor of quantum mechanics , 1999, hep-th/9909201.

[19]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[20]  C. Rovelli,et al.  Relational Quantum Mechanics , 2006 .

[21]  A. Connes,et al.  Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories , 1994, gr-qc/9406019.

[22]  C. Rovelli Statistical mechanics of gravity and the thermodynamical origin of time , 1993 .

[23]  L. Smolin On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia , 1986 .

[24]  L. Smolin Quantum gravity and the statistical interpretation of quantum mechanics , 1986 .

[25]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[26]  David Treeby Relativity , 1936, Am. Math. Mon..

[27]  S. Strauss On The Emergence Theme Of Physics , 2016 .

[28]  Richard H. Price,et al.  Black Holes , 1997 .

[29]  R. Penrose The road to reality. , 1984, Nursing times.

[30]  E. M. Lifshitz,et al.  Statistical physics. Pt.1, Pt.2 , 1980 .