Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates

The principal challenge for achieving reconfigurable optical antennas and metasurfaces is the need to generate continuous and large tunability of subwavelength, low-Q resonators. We demonstrate continuous and steady-state refractive index tuning at mid-infrared wavelengths using temperature-dependent control over the low-loss plasma frequency in III–V semiconductors. In doped InSb we demonstrate nearly two-fold increase in the electron effective mass leading to a positive refractive index shift (Δn > 1.5) that is an order of magnitude greater than conventional thermo-optic effects. In undoped films we demonstrate more than 10-fold change in the thermal free-carrier concentration producing a near-unity negative refractive index shift. Exploiting both effects within a single resonator system—intrinsic InSb wires on a heavily doped (epsilon-near-zero) InSb substrate—we demonstrate dynamically steady-state tunable Mie resonances. The observed line-width resonance shifts (Δλ > 1.7 μm) suggest new avenues for highly tunable and steady-state mid-infrared semiconductor antennas.Achieving large tunability of subwavelength resonators is a central challenge in nanophotonics. Here the authors demonstrate refractive index tuning at mid-infrared wavelengths using temperature-dependent control over the low loss plasma frequency in III-V semiconductors.

[1]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[2]  Mark L Brongersma,et al.  General properties of dielectric optical antennas. , 2009, Optics express.

[3]  J. Schuller,et al.  Designing Multipolar Resonances in Dielectric Metamaterials , 2016, Scientific Reports.

[4]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[5]  A. R. Ellis,et al.  Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films , 2014 .

[6]  M. Cardona,et al.  Temperature Coefficient of the Refractive Index of Diamond- and Zinc-Blende-Type Semiconductors , 1970 .

[7]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[8]  P. Powers,et al.  Temperature-dependent refractive index measurements of wafer-shaped InAs and InSb. , 2008, Applied optics.

[9]  Prasad P. Iyer,et al.  Electrically Reconfigurable Metasurfaces Using Heterojunction Resonators , 2016 .

[10]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[11]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[12]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[13]  S. Zukotynski,et al.  The Thermoelectric Power in InSb in the Presence of an External Magnetic Field , 1963 .

[14]  David G. Seiler,et al.  Temperature dependence of the energy gap of InSb using nonlinear optical techniques , 1985 .

[15]  R. Boyd,et al.  Optical response of dipole antennas on an epsilon-near-zero substrate , 2016 .

[16]  InP Based Very-Low Voltage Electro-optic Intensity Modulators in Conventional Waveguides , 2015 .

[17]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[18]  P. Barber Absorption and scattering of light by small particles , 1984 .

[19]  M. Stockman,et al.  Real and Imaginary Properties of Epsilon-Near-Zero Materials. , 2016, Physical review letters.

[20]  Igal Brener,et al.  Active tuning of all-dielectric metasurfaces. , 2015, ACS nano.

[21]  Ming Lu,et al.  Correlated perovskites as a new platform for super broadband tunable photonics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[22]  Jean-Jacques Greffet,et al.  Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. , 2013, Nano letters.

[23]  V. Podolskiy,et al.  All semiconductor negative-index plasmonic absorbers , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[24]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[25]  M. Oszwałldowski,et al.  Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb , 1988 .

[26]  Sri Sriram,et al.  Multifunctional metamaterial pyroelectric infrared detectors , 2017 .

[27]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[28]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[29]  Liu,et al.  Optical properties of InSb between 300 and 700 K. II. Magneto-optical experiments. , 1993, Physical review. B, Condensed matter.

[30]  F. J. González,et al.  Spectral response and far-field pattern of a dipole nano-antenna on metamaterial substrates having near-zero and negative indices of refraction , 2011 .

[31]  Alexander V. Kildishev,et al.  Role of epsilon-near-zero substrates in the optical response of plasmonic antennas , 2016 .

[32]  B. Ridley,et al.  On the properties of InSb quantum wells , 1984 .

[33]  A. Mikhailovsky,et al.  Widely Tunable Infrared Antennas Using Free Carrier Refraction. , 2015, Nano letters.

[34]  A. Boltasseva,et al.  Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off , 2015 .

[35]  Gorachand Ghosh,et al.  Handbook of thermo-optic coefficients of optical materials with applications , 1998 .

[36]  S. Shen,et al.  Infrared Wavefront Control Based on Graphene Metasurfaces , 2014 .

[37]  Daniel Wasserman,et al.  Doped semiconductors with band-edge plasma frequencies , 2014 .

[38]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[39]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[40]  Correlated perovskites as a new platform for super broadband tunable photonics , 2016, CLEO 2016.

[41]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[42]  W. Spitzer,et al.  Determination of Optical Constants and Carrier Effective Mass of Semiconductors , 1957 .

[43]  D. M. Szmyd,et al.  Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass , 1990 .

[44]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[45]  J. Zide,et al.  Single-material semiconductor hyperbolic metamaterials. , 2016, Optics express.

[46]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[47]  S. Stemmer,et al.  Conduction band edge effective mass of La-doped BaSnO3 , 2016 .

[48]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[49]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[50]  Optical properties of InSb between 300 and 700 K. I. Temperature dependence of the energy gap. , 1993, Physical review. B, Condensed matter.

[51]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[52]  Nikita A. Butakov,et al.  Reconfigurable Semiconductor Phased-Array Metasurfaces , 2015 .

[53]  F. Strumia,et al.  Temperature Dependence of InSb Reflectivity in the Far Infrared: Determination of the Electron Effective Mass , 1998 .

[54]  Zubin Jacob,et al.  Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media , 2015, 1505.06180.

[55]  M. Störmer,et al.  Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions , 2016, Nature Communications.

[56]  N. Engheta,et al.  Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities , 2015, Science Advances.

[57]  W. Zawadzki,et al.  Electron transport phenomena in small-gap semiconductors , 1974 .

[58]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.