Construction of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity

[1]  R. Hill,et al.  Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis , 1960, Nature.

[2]  A. Bard,et al.  Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates , 1978 .

[3]  A. Henglein,et al.  Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles , 1987 .

[4]  Lannoo,et al.  Calculation of the band gap for small CdS and ZnS crystallites. , 1989, Physical review. B, Condensed matter.

[5]  D. Chuu,et al.  RAMAN INVESTIGATIONS OF THE SURFACE MODES OF THE CRYSTALLITES IN CDS THIN FILMS GROWN BY PULSED LASER AND THERMAL EVAPORATION , 1991 .

[6]  Francis Levy,et al.  Photoluminescence in TiO2 anatase single crystals , 1993 .

[7]  I. Honma,et al.  Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in silver-cadmium sulfide hybrid particles , 1993 .

[8]  O. Zelaya-Ángel,et al.  Low resistivity cubic phase CdS films by chemical bath deposition technique , 1994 .

[9]  J. Barber Short-circuiting the Z-scheme , 1995, Nature.

[10]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[11]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[12]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .

[13]  Toshinobu Yoko,et al.  Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution , 1997 .

[14]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[15]  R. Penner,et al.  Size-Selective and Epitaxial Electrochemical/Chemical Synthesis of Sulfur-Passivated Cadmium Sulfide Nanocrystals on Graphite , 1998 .

[16]  M. Anpo,et al.  Preparation of Titanium Oxide Photocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water , 1998 .

[17]  Wei Zhang,et al.  Photoluminescence in anatase titanium dioxide nanocrystals , 2000 .

[18]  Jiaguo Yu,et al.  Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method , 2000 .

[19]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[20]  Yong Lei,et al.  Preparation and photoluminescence of highly ordered TiO2 nanowire arrays , 2001 .

[21]  Jiaguo Yu,et al.  The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition , 2003 .

[22]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[23]  S. Neophytides,et al.  Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange , 2003 .

[24]  Didier Robert,et al.  Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant , 2004 .

[25]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[26]  A. Kudo,et al.  Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation , 2004 .

[27]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[28]  C. Shang,et al.  Role of humic acid and ouinone model compounds in bromate reduction by zerovalent iron. , 2005, Environmental science & technology.

[29]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[30]  Xianzhi Fu,et al.  Photocatalytic activity of a hierarchically macro/mesoporous titania. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[31]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[32]  Jin Zhai,et al.  The fabrication and switchable superhydrophobicity of TiO2 nanorod films. , 2005, Angewandte Chemie.

[33]  M. Hon,et al.  Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. , 2005, The journal of physical chemistry. B.

[34]  H. Fu,et al.  Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity , 2006 .

[35]  C. Grimes,et al.  Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes : Preparation, characterization, and application to photoelectrochemical cells , 2006 .

[36]  H. Tada,et al.  Ultrafast photosynthetic reduction of elemental sulfur by Au nanoparticle-loaded TiO2. , 2006, The journal of physical chemistry. B.

[37]  Geoffrey A. Ozin,et al.  Amplified Photochemistry with Slow Photons , 2006 .

[38]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[39]  Yuh‐Lang Lee,et al.  Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells , 2007 .

[40]  L. Gao,et al.  Synthesis, characterization, and optical properties of well-defined N-doped, hollow silica/titania hybrid microspheres. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[41]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[42]  Jungwoo Lee,et al.  Enhanced charge collection and reduced recombination of CdS∕TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes , 2008 .

[43]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[44]  Akira Fujishima,et al.  Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol , 2008 .