Reset Adaptive Observer for a Class of Nonlinear Systems

This technical note proposes a novel kind of state estimator called reset adaptive observer (ReO). A ReO is an adaptive observer consisting of an integrator and a reset law that resets the output of the integrator depending on a predefined condition. The main contribution of this technical note is that the reset element theory is applied for the first time to the nonlinear adaptive observer framework. The introduction of the reset element in the adaptive law can decrease the overshooting and settling time of the estimation process without sacrificing the rising time. The stability and convergence LMI-based analysis of the proposed ReO is addressed and, additionally, an easily computable method to determine the L2 gain of the ReO dealing with noise-corrupted systems is presented.

[1]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[2]  Sophie Tarbouriech,et al.  Stability analysis for reset systems with input saturation , 2007, 2007 46th IEEE Conference on Decision and Control.

[3]  Kunsoo Huh,et al.  Optimal Proportional-Integral Adaptive Observer Design for a Class of Uncertain Nonlinear Systems , 2007, 2007 American Control Conference.

[4]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[5]  Martin J. Corless,et al.  State and Input Estimation for a Class of Uncertain Systems , 1998, Autom..

[6]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[7]  Robert E. Mahony,et al.  Gradient-Like Observers for Invariant Dynamics on a Lie Group , 2008, IEEE Transactions on Automatic Control.

[8]  W. C. Andrews,et al.  THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS. , 1901, Science.

[9]  J. C. Clegg A nonlinear integrator for servomechanisms , 1958, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[10]  Bahram Shafai,et al.  Design of Proportional Integral Adaptive Observers , 2008 .

[11]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[12]  R. Marino,et al.  Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[13]  Hansheng Wu,et al.  Adaptive Robust State Observers for a Class of Uncertain Nonlinear Dynamical Systems With Delayed State Perturbations , 2009, IEEE Transactions on Automatic Control.

[14]  M Maarten Steinbuch,et al.  Performance analysis of reset control systems , 2010 .

[15]  I. Horowitz,et al.  Non-linear design for cost of feedback reduction in systems with large parameter uncertainty † , 1975 .

[16]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[17]  Alfonso Baños,et al.  Delay-Independent Stability of Reset Systems , 2009, IEEE Transactions on Automatic Control.

[18]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[19]  C. Hollot,et al.  FUNDAMENTAL PROPERTIES OF RESET CONTROL SYSTEMS , 2002 .

[20]  B. Shafai,et al.  Design of Proportional Integral Adaptive Observer , 2008, 2008 American Control Conference.

[21]  K. Narendra,et al.  A new canonical form for an adaptive observer , 1974 .

[22]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[23]  Costas Kravaris,et al.  Nonlinear observer design for state and disturbance estimation , 2007, Proceedings of the 2004 American Control Conference.

[24]  S. Llorente,et al.  Reset adaptive observers and stability properties , 2010, 18th Mediterranean Conference on Control and Automation, MED'10.

[25]  Alfonso Baños,et al.  Reset times-dependent stability of reset control systems , 2007, 2007 European Control Conference (ECC).

[26]  Luca Zaccarian,et al.  Stability properties of reset systems , 2008, Autom..

[27]  Youyi Wang,et al.  Stability analysis and design of reset systems: Theory and an application , 2009, Autom..

[28]  W. Marsden I and J , 2012 .

[29]  G. Kreisselmeier Adaptive observers with exponential rate of convergence , 1977 .

[30]  Jeang-Lin Chang,et al.  Applying discrete-time proportional Integral observers for state and disturbance estimations , 2006, IEEE Trans. Autom. Control..

[31]  Qinghua Zhang,et al.  Adaptive observer with exponential forgetting factor for linear time varying systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).