Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis.

[1]  C. Bishop,et al.  A novel ubiquitin ligase is deficient in Fanconi anemia , 2003, Nature Genetics.

[2]  J. D. den Dunnen,et al.  An alternative to FISH: detecting deletion and duplication carriers within 24 hours , 2003, Journal of medical genetics.

[3]  M. Grompe,et al.  Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. , 2003, Genes & development.

[4]  C. McKerlie,et al.  Targeted disruption of exons 1 to 6 of the Fanconi Anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. , 2003, Human molecular genetics.

[5]  M. Aubé,et al.  Fanconi anemia genes are highly expressed in primitive CD34+ hematopoietic cells , 2003, BMC blood disorders.

[6]  P. Rosenberg,et al.  Cancer in Fanconi anemia. , 2003, Blood.

[7]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[8]  B. Alter Cancer in Fanconi anemia, 1927–2001 , 2003, Cancer.

[9]  A. D’Andrea,et al.  The Fanconi anaemia/BRCA pathway , 2003, Nature Reviews Cancer.

[10]  U. Langheinrich,et al.  Zebrafish as a Model Organism for the Identification and Characterization of Drugs and Genes Affecting p53 Signaling , 2002, Current Biology.

[11]  D. Schild,et al.  Recombinational DNA repair and human disease. , 2002, Mutation research.

[12]  Q. Waisfisz,et al.  Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-based microarrays , 2002, BMC blood disorders.

[13]  A. Venkitaraman Connecting Fanconi's anaemia to breast cancer predisposition , 2002, The Lancet.

[14]  R. Marcos,et al.  The Fanconi anaemia genome stability and tumour suppressor network. , 2002, Mutagenesis.

[15]  A. D’Andrea,et al.  S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. , 2002, Blood.

[16]  S. Cory,et al.  The Bcl2 family: regulators of the cellular life-or-death switch , 2002, Nature Reviews Cancer.

[17]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[18]  Hans Joenje,et al.  Biallelic Inactivation of BRCA2 in Fanconi Anemia , 2002, Science.

[19]  Bo Xu,et al.  Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways , 2002, Cell.

[20]  L. Zon,et al.  Evolutionary conservation of zebrafish linkage group 14 with frequently deleted regions of human chromosome 5 in myeloid malignancies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Heasman Morpholino oligos: making sense of antisense? , 2002, Developmental biology.

[22]  M. Buchwald,et al.  Disease model: Fanconi anemia. , 2002, Trends in molecular medicine.

[23]  Pamela A. Raymond,et al.  Otx5 regulates genes that show circadian expression in the zebrafish pineal complex , 2002, Nature Genetics.

[24]  L. S. Ross,et al.  Apoptosis in the developing zebrafish embryo. , 2001, Developmental biology.

[25]  A. D’Andrea,et al.  Fanconi anemia and DNA repair. , 2001, Human molecular genetics.

[26]  A. Taylor,et al.  Chromosome instability syndromes. , 2001, Best practice & research. Clinical haematology.

[27]  B. Paw,et al.  Myelopoiesis in the zebrafish, Danio rerio. , 2001, Blood.

[28]  Curtis C. Harris,et al.  Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis , 2001, Nature Genetics.

[29]  P. Morcos Achieving efficient delivery of morpholino oligos in cultured cells , 2001, Genesis.

[30]  R. Moses,et al.  Positional cloning of a novel Fanconi anemia gene, FANCD2. , 2001, Molecular cell.

[31]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[32]  J. Dowling,et al.  Small molecule developmental screens reveal the logic and timing of vertebrate development. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  N. Alon,et al.  Isolation of a cDNA representing the Fanconi anemia complementation group E gene. , 2000, American journal of human genetics.

[34]  Q. Waisfisz,et al.  The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. , 2000, Human molecular genetics.

[35]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[36]  J. McPherson,et al.  The syntenic relationship of the zebrafish and human genomes. , 2000, Genome research.

[37]  X. Wang,et al.  Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. , 1999, Molecular cell.

[38]  L. Zon,et al.  Zebrafish: a new model for human disease. , 1999, Genome research.

[39]  T. Ouchi,et al.  The BRCA2 gene product functionally interacts with p53 and RAD51. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Brownlie,et al.  Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia , 1998, Nature Genetics.

[41]  Hans Joenje,et al.  The Fanconi anaemia group G gene FANCG is identical with XRCC9 , 1998, Nature Genetics.

[42]  T. Ouchi,et al.  BRCA1 regulates p53-dependent gene expression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  B. Ponder,et al.  Involvement of Brca2 in DNA repair. , 1998, Molecular cell.

[44]  D. Näf,et al.  Molecular biology of Fanconi anemia. , 1997, Hematology/oncology clinics of North America.

[45]  A. D’Andrea,et al.  Molecular biology of Fanconi anemia: implications for diagnosis and therapy. , 1997, Blood.

[46]  T. Ludwig,et al.  Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. , 1997, Genes & development.

[47]  T. Mak,et al.  Brca2 is required for embryonic cellular proliferation in the mouse. , 1997, Genes & development.

[48]  E. Cundari,et al.  Deregulated apoptosis is a hallmark of the Fanconi anemia syndrome. , 1997, Cancer research.

[49]  M. Meyn Chromosome instability syndromes: lessons for carcinogenesis. , 1997, Current topics in microbiology and immunology.

[50]  M. Buchwald,et al.  Suppression of apoptosis in hematopoietic factor-dependent progenitor cell lines by expression of the FAC gene. , 1996, Blood.

[51]  P. Hasty,et al.  A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53 , 1996, Molecular and cellular biology.

[52]  N. Alon,et al.  Erratum: Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA , 1996, Nature Genetics.

[53]  Hans Joenje,et al.  Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA , 1996, Nature Genetics.

[54]  J. Rossant,et al.  The Tumor Suppressor Gene Brca1 Is Required for Embryonic Cellular Proliferation in the Mouse , 1996, Cell.

[55]  K. Nakao,et al.  Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. K. van den Berg,et al.  Fanconi anemia genes act to suppress a cross-linker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines. , 1996, Blood.

[57]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[58]  T. Soussi,et al.  p53-dependent pathway of radio-induced apoptosis is altered in Fanconi anemia. , 1995, Oncogene.

[59]  C. Kimmel,et al.  The zebrafish midblastula transition. , 1993, Development.

[60]  M. Buchwald,et al.  Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9 , 1992, Nature Genetics.