Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: A case study of fluvial sediments from the Pamir

[1]  B. Bookhagen,et al.  Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz for 10Be and 26Al analysis , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[2]  L. Ratschbacher,et al.  Building the Pamir‐Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust , 2017 .

[3]  D. Bourlès,et al.  Toward the feldspar alternative for cosmogenic 10Be applications , 2017 .

[4]  L. Ratschbacher,et al.  Building the Pamir‐Tibetan Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics , 2017 .

[5]  Nicola Doebelin,et al.  Profex: a graphical user interface for the Rietveld refinement program BGMN , 2015, Journal of applied crystallography.

[6]  R. Gloaguen,et al.  Denudation rates across the Pamir based on 10 Be concentrations in fluvial sediments: dominance of topographic over climatic factors , 2015 .

[7]  Richard Gloaguen,et al.  Rates of river incision across the main tectonic units of the Pamir identified using optically stimulated luminescence dating of fluvial terraces , 2014 .

[8]  J. Khan,et al.  The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 2. Timing of dome formation , 2013 .

[9]  R. Gloaguen,et al.  The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 1. Geometry and kinematics , 2013 .

[10]  G. Gehrels,et al.  Cenozoic deep crust in the Pamir , 2011 .

[11]  W. Kieser,et al.  Mass spectrometry with accelerators. , 2011, Mass spectrometry reviews.

[12]  G. Dollinger,et al.  A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting , 2010 .

[13]  F. Blanckenburg,et al.  Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting , 2010 .

[14]  K. Kuman,et al.  Early Acheulean technology in the Rietputs Formation, South Africa, dated with cosmogenic nuclides. , 2009, Journal of human evolution.

[15]  M. Brookfield Evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: Rivers draining north from the Pamir syntaxis , 2008 .

[16]  Jiann-Yang Hwang,et al.  Evaluation of a Turkish low quality oil shale by flotation as a clean energy source: Material characterization and determination of flotation behavior , 2006 .

[17]  L. Ratschbacher,et al.  Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet , 2004 .

[18]  D. Elmore,et al.  Accelerator mass spectrometry in geologic research , 2003 .

[19]  K. Forssberg,et al.  Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore. , 2002, Journal of Colloid and Interface Science.

[20]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[21]  S. Merchel,et al.  An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry , 1999 .

[22]  Peter Molnar,et al.  Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir , 1993 .

[23]  M. Kurz,et al.  Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al , 1991 .

[24]  R. Kavanagh,et al.  Half-life of 26Al , 1983 .

[25]  J. Shimoiizaka Separation of Feldspar from Quartz by Flotation , 1978 .

[26]  R. Arnold,et al.  Hallimond tube flotation of scheelite and calcite with amines , 1978 .

[27]  S. Bulatovic Beneficiation of Feldspar Ore , 2015 .

[28]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .