Percentile indices for assessing changes in heavy precipitation events

[1]  H. Fowler,et al.  Downturn in scaling of UK extreme rainfall with temperature for future hottest days , 2016 .

[2]  C. Schär,et al.  Heavy precipitation in a changing climate: Does short‐term summer precipitation increase faster? , 2015 .

[3]  N. Nakicenovic,et al.  Summary for policymakers , 1963 .

[4]  E. Fischer,et al.  Models agree on forced response pattern of precipitation and temperature extremes , 2014 .

[5]  F. Giorgi,et al.  A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations , 2014 .

[6]  P. O’Gorman Contrasting responses of mean and extreme snowfall to climate change , 2014, Nature.

[7]  C. Schär,et al.  Evaluation of the convection‐resolving regional climate modeling approach in decade‐long simulations , 2014 .

[8]  H. Fowler,et al.  Heavier summer downpours with climate change revealed by weather forecast resolution model , 2014 .

[9]  M. Dettinger,et al.  The key role of dry days in changing regional climate and precipitation regimes , 2014, Scientific Reports.

[10]  A. K. Tank,et al.  An Alternative Index for the Contribution of Precipitation on Very Wet Days to the Total Precipitation , 2014 .

[11]  P. Pall,et al.  Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region , 2013 .

[12]  F. Zwiers,et al.  Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections , 2013 .

[13]  Robert E. Grimm,et al.  The role of acids in electrical conduction through ice , 2013 .

[14]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[15]  S. Seneviratne,et al.  Global changes in extreme events: regional and seasonal dimension , 2012, Climatic Change.

[16]  G. Hegerl,et al.  Indices for monitoring changes in extremes based on daily temperature and precipitation data , 2011 .

[17]  D. Maraun,et al.  Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user , 2010 .

[18]  Veronika Eyring,et al.  A Summary of the CMIP5 Experiment Design , 2010 .

[19]  P. O'Gorman,et al.  The physical basis for increases in precipitation extremes in simulations of 21st-century climate change , 2009, Proceedings of the National Academy of Sciences.

[20]  Clemens Simmer,et al.  Improving Estimates of Heavy and Extreme Precipitation Using Daily Records from European Rain Gauges , 2009 .

[21]  P. Linden,et al.  ENSEMBLES: Climate Change and its Impacts - Summary of research and results from the ENSEMBLES project , 2009 .

[22]  G. Lenderink,et al.  Increase in hourly precipitation extremes beyond expectations from temperature changes , 2008 .

[23]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[24]  H. Fowler,et al.  Estimating change in extreme European precipitation using a multimodel ensemble , 2007 .

[25]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[26]  Manola Brunet,et al.  Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000 , 2006 .

[27]  G. Plaut,et al.  Extreme precipitation over the Maritime Alps and associated weather regimes simulated by a regional climate model: Present-day and future climate scenarios , 2006 .

[28]  C. Frei,et al.  Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models , 2006 .

[29]  A. K. Tank,et al.  Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99 , 2003 .

[30]  M. Allen,et al.  Constraints on future changes in climate and the hydrologic cycle , 2002, Nature.

[31]  W. May,et al.  Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle , 2002 .

[32]  J. Gregory,et al.  A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates , 2001 .

[33]  C. Schär,et al.  Detection Probability of Trends in Rare Events: Theory and Application to Heavy Precipitation in the Alpine Region , 2001 .

[34]  J. Räisänen,et al.  Changes in average and extreme precipitation in two regional climate model experiments , 2001 .

[35]  N. Nicholls,et al.  TRENDS IN EXTREME RAINFALL INDICES FOR AN UPDATED HIGH QUALITY DATA SET FOR AUSTRALIA, 1910-1998 , 2000 .

[36]  David R. Easterling,et al.  Changes in the Probability of Heavy Precipitation: Important Indicators of Climatic Change , 1999 .

[37]  F. Zwiers,et al.  Changes in the Extremes of the Climate Simulated by CCC GCM2 under CO2 Doubling , 1998 .

[38]  K. Hennessy,et al.  Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990 , 1998 .

[39]  D. Lüthi,et al.  Heavy precipitation processes in a warmer climate , 1998 .

[40]  Thomas R. Karl,et al.  Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States , 1998 .

[41]  J. Gregory,et al.  Simulation of daily variability of surface temperature and precipitation over europe in the current and 2 × Co2 climates using the UKMO climate model , 1995 .

[42]  K. Hennessy,et al.  Potential impacts of global warming on the frequency and magnitude of heavy precipitation , 1995 .

[43]  P. Whetton,et al.  Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events , 1992 .

[44]  The Effect of Doubling the CO2 Concentration on Convective and Non-convective Precipitation in a Gen , 1989 .