Wavelet-based denoising: A brief review

The denoising of Gaussian additive white noise is a classical problem in signal and image processing. In this paper, we classify the most important wavelet denoising methods into different categories and give a brief overview of each method classified. In general, the recently developed block matching and 3D filtering (BM3D) algorithm performs much better than other existing methods published in the literature. We recommend using this method for image denoising because it is currently one of the state-of-the-art denoising methods. The non-local means method and the optimal spatial adaptation (OSA) method are also very successful methods in image denoising.

[1]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[2]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[3]  A. Krzyżak,et al.  Image denoising using neighbouring wavelet coefficients , 2005 .

[4]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[5]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[6]  Xiao-Ping Zhang,et al.  Adaptive denoising based on SURE risk , 1998, IEEE Signal Processing Letters.

[7]  David L. Donoho,et al.  Translation- and direction-invariant denoising of 2D and 3D images: experience and algorithms , 1996, Optics & Photonics.

[8]  Tien D. Bui,et al.  Translation-invariant denoising using multiwavelets , 1998, IEEE Trans. Signal Process..

[9]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[10]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  T D Bui,et al.  Translation-invariant Multiwavelets for Image De-noising , 1999 .

[12]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[13]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[14]  Thierry Blu,et al.  The SURE-LET Approach to Image Denoising , 2007, IEEE Transactions on Image Processing.

[15]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[16]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[17]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[18]  Tien D. Bui,et al.  Image Denoising Based on Wavelet Shrinkage Using Neighbor and Level Dependency , 2009, Int. J. Wavelets Multiresolution Inf. Process..

[19]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[20]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[21]  Tien D. Bui,et al.  Multivariate statistical modeling for image denoising using wavelet transforms , 2005, Signal Process. Image Commun..

[22]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[23]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[24]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[25]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[26]  T. D. Bui,et al.  Multiwavelets denoising using neighboring coefficients , 2003, IEEE Signal Processing Letters.

[27]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[28]  Adam Krzyzak,et al.  Image denoising with neighbour dependency and customized wavelet and threshold , 2005, Pattern Recognit..

[29]  Xiao-Ping Zhang,et al.  Thresholding neural network for adaptive noise reduction , 2001, IEEE Trans. Neural Networks.

[30]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Thierry Blu,et al.  SURE-LET Multichannel Image Denoising: Interscale Orthonormal Wavelet Thresholding , 2008, IEEE Transactions on Image Processing.

[32]  Balázs Kégl,et al.  Image denoising with complex ridgelets , 2007, Pattern Recognit..

[33]  Charles Kervrann,et al.  Optimal Spatial Adaptation for Patch-Based Image Denoising , 2006, IEEE Transactions on Image Processing.

[34]  Guangyi Chen,et al.  Wavelet-based image denoising using three scales of dependency , 2012 .

[35]  W. Shengqian,et al.  Adaptive shrinkage de-noising using neighbourhood characteristic , 2002 .

[36]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[37]  Thierry Blu,et al.  A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding , 2007, IEEE Transactions on Image Processing.