The three-loop form factor in N=4 super Yang-Mills

: In this paper we study the Sudakov form factor in N = 4 super Yang-Mills theory to the three-loop order. The latter is expressed in terms of planar and non-planar loop integrals. We show that it is possible to choose a representation in which each loop integral has uniform transcendentality. We verify analytically the expected exponentiation of the infrared divergences with the correct values of the three-loop cusp and collinear anomalous dimensions in dimensional regularisation. We find that the form factor in N = 4 super Yang-Mills can be related to the leading transcendentality part of the quark and gluon form factors in QCD. We also study the ultraviolet properties of the form factor in D > 4 dimensions, and find unexpected cancellations, resulting in an improved ultraviolet behaviour.

[1]  T. Gehrmann,et al.  Two-loop QCD corrections to the helicity amplitudes for H → 3 partons , 2011, 1112.3554.

[2]  S. Naculich All-loop group-theory constraints for color-ordered SU(N) gauge-theory amplitudes , 2011, 1110.1859.

[3]  A. Brandhuber,et al.  Harmony of super form factors , 2011, 1107.5067.

[4]  J. Carrasco,et al.  Generic multiloop methods and application to super-Yang–Mills , 2011, 1103.3298.

[5]  V. Smirnov,et al.  Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight , 2011 .

[6]  M. Douglas,et al.  On D = 5 super Yang-Mills theory and (2, 0) theory , 2010, 1012.2880.

[7]  A. Brandhuber,et al.  Form factors in $ \mathcal{N} = 4 $ super Yang-Mills and periodic Wilson loops , 2010, 1011.1899.

[8]  J. Drummond,et al.  New differential equations for on-shell loop integrals , 2010, 1010.3679.

[9]  J. Maldacena,et al.  Form factors at strong coupling via a Y-system , 2010, 1009.1139.

[10]  L. Dixon,et al.  Complete four-loop four-point amplitude in N=4 super-Yang-Mills theory , 2010, 1008.3327.

[11]  J. Drummond,et al.  Simple loop integrals and amplitudes in N=4 SYM , 2010, 1008.2965.

[12]  A. Smirnov,et al.  Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ε , 2010, 1005.0362.

[13]  C. Studerus,et al.  Calculation of the quark and gluon form factors to three loops in QCD , 2010, 1004.3653.

[14]  G. Korchemsky,et al.  Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes , 2007, 0712.1223.

[15]  V. A. Smirnov,et al.  Analytic results for massless three-loop form factors , 2010, 1001.2887.

[16]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[17]  A. V. Smirnov,et al.  FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..

[18]  J. A. M. Vermaseren,et al.  The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..

[19]  L. Dixon,et al.  Ultraviolet behavior of N = 8 supergravity at four loops. , 2009, Physical review letters.

[20]  H. Ita,et al.  Structure of supersymmetric sums in multiloop unitarity cuts , 2009, 0903.5348.

[21]  T. Becher,et al.  Erratum: On the structure of infrared singularities of gauge-theory amplitudes , 2009, Journal of High Energy Physics.

[22]  M. Steinhauser,et al.  Quark and gluon form factors to three loops. , 2009, Physical review letters.

[23]  P. Howe,et al.  The ultra-violet question in maximally supersymmetric field theories , 2009, 0901.4661.

[24]  T. Huber On a two-loop crossed six-line master integral with two massive lines , 2009, 0901.2133.

[25]  H. Schnitzer,et al.  Subleading-color contributions to gluon-gluon scattering in = 4 SYM theory and relations to = 8 supergravity , 2008, 0809.0376.

[26]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[27]  P. Heslop,et al.  Four-point amplitudes in N=8 supergravity and Wilson loops , 2008, 0805.2763.

[28]  H. Schnitzer,et al.  Two-loop graviton scattering relation and IR behavior in N=8 supergravity , 2008, 0805.2347.

[29]  D. Maitre,et al.  Master integrals for fermionic contributions to massless three-loop form-factors , 2007, 0711.3590.

[30]  J. Maldacena,et al.  Comments on gluon scattering amplitudes via AdS/CFT , 2007, 0710.1060.

[31]  G. Korchemsky,et al.  On planar gluon amplitudes/Wilson loops duality , 2007, 0709.2368.

[32]  K. Stelle Supergravity: Finite after all? , 2007 .

[33]  L. Dixon,et al.  Cancellations beyond finiteness in N=8 supergravity at three loops. , 2007, Physical review letters.

[34]  F. Cachazo,et al.  Four-loop cusp anomalous dimension from obstructions , 2006, hep-th/0612309.

[35]  L. Lipatov,et al.  On the highest transcendentality in N=4 SUSY , 2006, hep-th/0611204.

[36]  M. Czakon,et al.  The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory , 2006, hep-th/0610248.

[37]  V. Smirnov,et al.  Magic identities for conformal four-point integrals , 2006, hep-th/0607160.

[38]  T. Huber,et al.  Master integrals for massless three-loop form factors , 2006, 0902.3512.

[39]  T. Huber,et al.  Two-loop quark and gluon form factors in dimensional regularisation , 2005, hep-ph/0507061.

[40]  L. Dixon,et al.  Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond , 2005, hep-th/0505205.

[41]  F. Cachazo,et al.  Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.

[42]  A. Onishchenko,et al.  Three-loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model , 2004, hep-th/0404092.

[43]  L. Dixon,et al.  Planar amplitudes in maximally supersymmetric Yang-Mills theory. , 2003, Physical review letters.

[44]  T. Gehrmann,et al.  Two-loop QCD helicity amplitudes for e+e−→3 jets , 2002, hep-ph/0206067.

[45]  T. Gehrmann,et al.  The two-loop QCD matrix element for e+e−→3 jets , 2002 .

[46]  L. Dixon,et al.  Two-Loop Helicity Amplitudes for Gluon-Gluon Scattering in QCD and Supersymmetric Yang-Mills Theory , 2002, hep-ph/0201161.

[47]  T. Gehrmann,et al.  Two-loop master integrals for jets: the non-planar topologies , 2001, hep-ph/0101124.

[48]  S. Laporta,et al.  HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.

[49]  J. B. Tausk Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999, hep-ph/9909506.

[50]  P. Howe On harmonic superspace , 1998, hep-th/9812133.

[51]  J. Rozowsky,et al.  Two-loop four-gluon amplitudes in N = 4 super-Yang-Mills , 1997, hep-ph/9702424.

[52]  T. V. Ritbergen,et al.  The four-loop β-function in quantum chromodynamics , 1997, hep-ph/9701390.

[53]  A. I. Davydychev,et al.  Two loop three point diagrams with irreducible numerators , 1994, hep-ph/9412356.

[54]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[55]  Z. Kunszt,et al.  One-loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory , 1993, hep-ph/9305239.

[56]  Z. Bern,et al.  Color decomposition of one-loop amplitudes in gauge theories , 1991 .

[57]  G. Sterman,et al.  Analytic continuation of the Sudakov form factor in QCD. , 1990, Physical review. D, Particles and fields.

[58]  P. Howe,et al.  THE ULTRAVIOLET PROPERTIES OF SUPERSYMMETRIC FIELD THEORIES , 1989 .

[59]  W. V. Neerven,et al.  Infrared behaviour of on shell form factors in anN=4 supersymmetric Yang-Mills field theory , 1986 .

[60]  M. Grisaru,et al.  Supergraphity (II). Manifestly covariant rules and higher-loop finiteness , 1982 .

[61]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[62]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[63]  S. Moch,et al.  Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations , 2012 .

[64]  D. Kazakov,et al.  ON MHV FORM FACTORS IN SUPERSPACE FOR N = 4 SYM THEORY , 2012 .

[65]  Jennifer S. Thom Recursion as Relations , 2012 .

[66]  H. Schnitzer,et al.  A ug 2 01 0 HU-EP-10 / 17 BOW-PH-147 BRX-TH-618 Brown-HET-1594 More loops and legs in Higgs-regulated N = 4 SYM amplitudes , 2010 .

[67]  A. Sagnotti,et al.  The ultraviolet behavior of N = 4 Yang-Mills and the power counting of extended superspace☆ , 1985 .