Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments

To demonstrate that diffusion‐weighted images should be acquired at the instant of maximum blood velocity in kidneys to extract the perfusion fraction (PF) by the bi‐exponential intravoxel incoherent motion model.

[1]  M D King,et al.  Perfusion and diffusion MR imaging , 1992, Magnetic resonance in medicine.

[2]  A. Istratov,et al.  Exponential analysis in physical phenomena , 1999 .

[3]  H I Glass,et al.  The quantitative limitations of exponential curve fitting. , 1971, Physics in medicine and biology.

[4]  Francis Cassot,et al.  Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: Methodology and baseline flow , 2011, NeuroImage.

[5]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[6]  Nick C Fox,et al.  Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. , 1998, Journal of computer assisted tomography.

[7]  Philippe C. Cattin,et al.  A hybrid multimodal non-rigid registration of MR images based on diffeomorphic demons , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[8]  Aleksander S Popel,et al.  Microcirculation and Hemorheology. , 2005, Annual review of fluid mechanics.

[9]  Bachir Taouli,et al.  IVIM diffusion-weighted imaging of the liver at 3.0 T: Comparison with 1.5 T , 2015, European journal of radiology open.

[10]  M. Khamaisi,et al.  Renal Parenchymal Hypoxia, Hypoxia Response and the Progression of Chronic Kidney Disease , 2008, American Journal of Nephrology.

[11]  M. Wintermark,et al.  A Simplified Model for Intravoxel Incoherent Motion Perfusion Imaging of the Brain , 2016, American Journal of Neuroradiology.

[12]  Henry Rusinek,et al.  Assessment of renal function using intravoxel incoherent motion diffusion‐weighted imaging and dynamic contrast‐enhanced MRI , 2016, Journal of magnetic resonance imaging : JMRI.

[13]  Y. Mazaheri,et al.  Extension of the intravoxel incoherent motion model to non‐gaussian diffusion in head and neck cancer , 2012, Journal of magnetic resonance imaging : JMRI.

[14]  K. Sułkowska,et al.  Diffusion-weighted MRI of kidneys in healthy volunteers and living kidney donors. , 2015, Clinical radiology.

[15]  F. Becce,et al.  Selective microvascular muscle perfusion imaging in the shoulder with intravoxel incoherent motion (IVIM). , 2017, Magnetic resonance imaging.

[16]  Martijn Froeling,et al.  Intravoxel incoherent motion modeling in the kidneys: Comparison of mono‐, bi‐, and triexponential fit , 2016, Journal of magnetic resonance imaging : JMRI.

[17]  R. Meuli,et al.  Perfusion Measurement in Brain Gliomas with Intravoxel Incoherent Motion MRI , 2014, American Journal of Neuroradiology.

[18]  Jean J. Chen,et al.  Human whole blood T2 relaxometry at 3 Tesla , 2009, Magnetic resonance in medicine.

[19]  Denis Le Bihan,et al.  What can we see with IVIM MRI? , 2017, NeuroImage.

[20]  Utaroh Motosugi,et al.  Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction. , 2013, Magnetic resonance imaging.

[21]  Sebastiano Barbieri,et al.  Comparison of Intravoxel Incoherent Motion Parameters across MR Imagers and Field Strengths: Evaluation in Upper Abdominal Organs. , 2016, Radiology.

[22]  Henry Rusinek,et al.  Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. , 2012, Radiology.

[23]  P. T. While,et al.  A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion‐weighted MRI , 2017, Magnetic resonance in medicine.

[24]  N. Oesingmann,et al.  Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. , 2016, Magnetic resonance imaging.

[25]  Berthold Kiefer,et al.  Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. , 2013, Radiology.

[26]  D. Collins,et al.  Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases , 2013, European Radiology.

[27]  Yong Zhang,et al.  Intravoxel incoherent motion MRI of the healthy pancreas: Monoexponential and biexponential apparent diffusion parameters of the normal head, body and tail , 2015, Journal of magnetic resonance imaging : JMRI.

[28]  C. Boesch,et al.  Diffusion tensor imaging of the human kidney: Does image registration permit scanning without respiratory triggering? , 2016, Journal of magnetic resonance imaging : JMRI.

[29]  Jianrong Xu,et al.  Intravoxel incoherent motion diffusion‐weighted MR imaging of breast cancer at 3.0 tesla: Comparison of different curve‐fitting methods , 2015, Journal of magnetic resonance imaging : JMRI.

[30]  I. Katayama,et al.  Simple and Reliable Determination of Intravoxel Incoherent Motion Parameters for the Differential Diagnosis of Head and Neck Tumors , 2014, PloS one.

[31]  M. Zeng,et al.  Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging , 2014, European Radiology.

[32]  Daniel K Sodickson,et al.  Comparison of fitting methods and b‐value sampling strategies for intravoxel incoherent motion in breast cancer , 2015, Magnetic resonance in medicine.

[33]  Jing Yuan,et al.  Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors. , 2016, Quantitative imaging in medicine and surgery.

[34]  J. Courtier,et al.  Intravoxel incoherent motion analysis of renal allograft diffusion with clinical and histopathological correlation in pediatric kidney transplant patients: A preliminary cross‐sectional observational study , 2017, Pediatric transplantation.

[35]  M. Bronskill,et al.  T1, T2 relaxation and magnetization transfer in tissue at 3T , 2005, Magnetic resonance in medicine.

[36]  T. Kessler,et al.  Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. , 2009, Radiology.

[37]  D. Collins,et al.  Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. , 2011, AJR. American journal of roentgenology.

[38]  Jing Yuan,et al.  Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. , 2017, Quantitative imaging in medicine and surgery.

[39]  Chris Boesch,et al.  Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. , 2006, Radiology.

[40]  Reto Meuli,et al.  Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle , 2013, PloS one.

[41]  Reto Meuli,et al.  Measuring brain perfusion with intravoxel incoherent motion (IVIM): Initial clinical experience , 2014, Journal of magnetic resonance imaging : JMRI.

[42]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[43]  M. Van Cauteren,et al.  Intravoxel incoherent motion imaging of masticatory muscles: pilot study for the assessment of perfusion and diffusion during clenching. , 2013, AJR. American journal of roentgenology.

[44]  Reto Meuli,et al.  Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. , 2012, Radiology.

[45]  Baris Turkbey,et al.  Intravoxel incoherent motion MR imaging for prostate cancer: An evaluation of perfusion fraction and diffusion coefficient derived from different b‐value combinations , 2013, Magnetic resonance in medicine.

[46]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[47]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[48]  N. Rofsky,et al.  MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. , 2004, Radiology.

[49]  Andreas Wetscherek,et al.  Characterization of the diffusion coefficient of blood , 2017, Magnetic resonance in medicine.

[50]  Dow-Mu Koh,et al.  Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling , 2014, Magnetic resonance in medicine.

[51]  Jeannette M. Perez-Rossello,et al.  Characterization of fast and slow diffusion from diffusion‐weighted MRI of pediatric Crohn's disease , 2013, Journal of magnetic resonance imaging : JMRI.

[52]  G. Pentang,et al.  Temporally Resolved Electrocardiogram-Triggered Diffusion-Weighted Imaging of the Human Kidney: Correlation Between Intravoxel Incoherent Motion Parameters and Renal Blood Flow at Different Time Points of the Cardiac Cycle , 2012, Investigative radiology.

[53]  C. Boesch,et al.  Comparison of physiological triggering schemes for diffusion‐weighted magnetic resonance imaging in kidneys , 2010, Journal of magnetic resonance imaging : JMRI.

[54]  B Stieltjes,et al.  IVIM-DWI of transplanted kidneys: reduced diffusion and perfusion dependent on cold ischemia time. , 2012, European journal of radiology.