Polynomial interpolation with repeated Richardson extrapolation to reduce discretization error in CFD

[1]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[2]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[3]  T. Shih,et al.  Effects of grid staggering on numerical schemes , 1989 .

[4]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[5]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[6]  N. G. Wright,et al.  An efficient multigrid approach to solving highly recirculating flows , 1995 .

[7]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[8]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[9]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[10]  C. H. Marchi,et al.  UNIDIMENSIONAL NUMERICAL SOLUTION ERROR ESTIMATION FOR CONVERGENT APPARENT ORDER , 2002 .

[11]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[12]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[13]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[14]  Clarence O. E. Burg,et al.  Application of Richardson extrapolation to the numerical solution of partial differential equations , 2009 .

[15]  Yin Wang,et al.  Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D poisson equation , 2009, J. Comput. Phys..

[16]  C. H. Marchi,et al.  The lid-driven square cavity flow: numerical solution with a 1024 x 1024 grid , 2009 .

[17]  C. Burg,et al.  Application of Richardson Extrapolation to the Numerical Solution of Partial Differential Equations , 2009 .

[18]  Yin Wang,et al.  Fast and robust sixth-order multigrid computation for the three-dimensional convection-diffusion equation , 2010, J. Comput. Appl. Math..

[19]  Yongbin Ge,et al.  A high order finite difference method with Richardsonextrapolation for 3D convection diffusion equation , 2010, Appl. Math. Comput..

[20]  Marc Medale,et al.  Benchmark Solution for a Three-Dimensional Mixed-Convection Flow, Part 2: Analysis of Richardson Extrapolation in the Presence of a Singularity , 2011 .

[21]  M. Medale,et al.  Benchmark Solution for a Three-Dimensional Mixed-Convection Flow, Part 1: Reference Solutions , 2011 .

[22]  Christopher J. Roy,et al.  A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .

[23]  Carlos Henrique Marchi,et al.  Highly accurate numerical solutions with repeated Richardson extrapolation for 2D laplace equation , 2013 .

[24]  C. Marchi,et al.  Effect of Ten CFD Numerical Schemes on Repeated Richardson Extrapolation (RRE) , 2013 .