Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport

[1]  K. Dawson,et al.  Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. , 2011, Small.

[2]  S. Parveen,et al.  A novel fluorescent aptasensor based on single-walled carbon nanohorns. , 2011, Nanoscale.

[3]  S. T. Picraux,et al.  Noncovalent assembly of carbon nanotube-inorganic hybrids , 2011 .

[4]  Kazuo Maruyama,et al.  Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. , 2011, Advanced drug delivery reviews.

[5]  Christopher G. Rylander,et al.  Single walled carbon nanohorns as photothermal cancer agents , 2011, Lasers in surgery and medicine.

[6]  Christopher G. Rylander,et al.  Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. , 2010, Cancer research.

[7]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[8]  Christopher G. Rylander,et al.  In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. , 2010, Nano letters.

[9]  M. Ferrari,et al.  Size and shape effects in the biodistribution of intravascularly injected particles. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Q. Fei,et al.  A novel silica-coated multiwall carbon nanotube with CdTe quantum dots nanocomposite. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  M. Niu,et al.  In situ growth of CdSe/CdS quantum dots inside and outside of MWCNTs , 2009 .

[12]  P. Ajayan,et al.  Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation , 2009, Proceedings of the National Academy of Sciences.

[13]  T. Ichihashi,et al.  Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. , 2009, ACS nano.

[14]  P. Midgley,et al.  Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. , 2009, ACS nano.

[15]  Liang Li,et al.  Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging , 2009 .

[16]  A. Maitra,et al.  Imaging pancreatic cancer using bioconjugated InP quantum dots. , 2009, ACS nano.

[17]  James F Rusling,et al.  Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. , 2009, ACS nano.

[18]  S. Gaillard,et al.  In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. , 2009, Nano letters.

[19]  N. Monteiro-Riviere,et al.  Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. , 2009, Toxicology and applied pharmacology.

[20]  I. Ivanov,et al.  Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns , 2008 .

[21]  Kunihiro Tsuchida,et al.  Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy , 2008, Proceedings of the National Academy of Sciences.

[22]  W. Wang,et al.  In vivo Imaging and Drug Storage by Quantum‐Dot‐Conjugated Carbon Nanotubes , 2008 .

[23]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[24]  Yuhei Yamamoto,et al.  Single wall carbon nanohorn as a drug carrier for controlled release , 2008 .

[25]  H. Dai,et al.  Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. , 2008, Journal of the American Chemical Society.

[26]  B. Nemery,et al.  Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge , 2008, Environmental health perspectives.

[27]  Guobao Xu,et al.  Amperometric glucose biosensor based on single-walled carbon nanohorns. , 2008, Biosensors & bioelectronics.

[28]  M. Prato,et al.  Opportunities and challenges of carbon-based nanomaterials for cancer therapy , 2008 .

[29]  W. Wang,et al.  Quantum‐Dot‐Activated Luminescent Carbon Nanotubes via a Nano Scale Surface Functionalization for in vivo Imaging , 2007, Advanced Materials.

[30]  K. Lafdi,et al.  Effect of particle dimension on biocompatibility of carbon nanomaterials , 2007 .

[31]  P. Midgley,et al.  Direct imaging of single-walled carbon nanotubes in cells. , 2007, Nature nanotechnology.

[32]  S. Arepalli,et al.  Effect of Mild Nitric Acid Oxidation on Dispersability, Size, and Structure of Single-Walled Carbon Nanotubes , 2007 .

[33]  Irving P. Herman,et al.  Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes , 2007 .

[34]  P. Ajayan,et al.  Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. , 2007, Toxicology letters.

[35]  M. Prato,et al.  Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. , 2007, Nature nanotechnology.

[36]  Joel G Pounds,et al.  Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[37]  Richard O. Claus,et al.  Transparent and flexible quantum dot–polymer composites using an ionic liquid as compatible polymerization medium , 2007 .

[38]  B. Landi,et al.  Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes , 2006 .

[39]  T. Mustelin,et al.  Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. , 2006, Biomacromolecules.

[40]  Eiichi Nakamura,et al.  In Vivo Magnetic Resonance Imaging of Single‐Walled Carbon Nanohorns by Labeling with Magnetite Nanoparticles , 2006 .

[41]  John V Frangioni,et al.  Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. , 2006, Journal of the American Chemical Society.

[42]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[43]  Zhuang Liu,et al.  Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. , 2006, Angewandte Chemie.

[44]  Y. Bando,et al.  A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch. , 2005, Small.

[45]  M. Yudasaka,et al.  Carbon nanohorns as anticancer drug carriers. , 2005, Molecular pharmaceutics.

[46]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[47]  Hideki Tanaka,et al.  Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. , 2005, The journal of physical chemistry. B.

[48]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[49]  Masato Yasuhara,et al.  Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification , 2004 .

[50]  M. Yudasaka,et al.  Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. , 2004, Molecular pharmaceutics.

[51]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[52]  Joseph Wang,et al.  Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. , 2004, Journal of the American Chemical Society.

[53]  Junya Suehiro,et al.  Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy , 2003 .

[54]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[55]  Stephen G. Hickey,et al.  Highly Luminescent Water-Soluble CdTe Quantum Dots , 2003 .

[56]  Cengiz S. Ozkan,et al.  Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications , 2003 .

[57]  Todd D. Krauss,et al.  Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes , 2002 .

[58]  Stanislaus S. Wong,et al.  Synthesis and Characterization of Carbon Nanotube−Nanocrystal Heterostructures , 2002 .

[59]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[60]  D. Colbert,et al.  Dissolution of Full-Length Single-Walled Carbon Nanotubes , 2001 .

[61]  Young Hee Lee,et al.  Hydrogen storage in single-walled carbon nanotubes , 2000 .

[62]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[63]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[64]  R K Jain,et al.  Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. , 1995, Cancer research.

[65]  V. Torchilin,et al.  Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. , 1991, Biochimica et biophysica acta.

[66]  J. Au,et al.  Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. , 2012, Advanced drug delivery reviews.

[67]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[68]  Daniel Scherman,et al.  Noncovalent functionalization of carbon nanotubes with amphiphilic gd3+ chelates: toward powerful t1 and t2 MRI contrast agents. , 2008, Nano letters.

[69]  J. Cheon,et al.  Inorganic nanoprobes for biological sensing and imaging , 2008 .

[70]  P. Ajayan,et al.  Potential Applications of Carbon Nanotubes , 2007 .

[71]  V. Crespi,et al.  Single-Wall Carbon Nanohorns and Nanocones , 2007 .

[72]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.