A Multidimensional Latent Class IRT Model for Non-Ignorable Missing Responses

A relevant problem in applications of Item Response Theory (IRT) models is due to non- ignorable missing responses. We propose a multidimensional latent class IRT model for binary items in which the missingness mechanism is driven by a latent variable (propensity to answer) correlated with the latent variable for the ability (or latent variables for the abilities) measured by the test items. These latent variables are assumed to have a joint discrete distribution. This assumption is convenient both from the point of view of estimation, since the manifest distribution of the responses may be simply obtained, and for the decisional process, since individuals are classified in homogeneous groups having common latent variable values. Moreover, this assumption avoids parametric formulations for the distribution of the latent variables, giving rise to a semiparametric model. The basic model, which can be expressed in terms of a Rasch or a two-parameters logistic parameterization, is also extended to allow for covariates that influence the weights of latent classes. The resulting model may be efficiently estimated through the discrete marginal maximum likelihood method, making use of the Expectation-Maximization algorithm. The proposed approach is illustrated through an application to data coming from a Students’ Entry Test for the admission to the courses in Economics in an Italian University.

[1]  A. Punzo,et al.  Rasch analysis for binary data with nonignorable nonresponses , 2013 .

[2]  Matthias von Davier,et al.  COMPARISON OF MULTIDIMENSIONAL ITEM RESPONSE MODELS: MULTIVARIATE NORMAL ABILITY DISTRIBUTIONS VERSUS MULTIVARIATE POLYTOMOUS ABILITY DISTRIBUTIONS , 2008 .

[3]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[4]  Sophia Rabe-Hesketh,et al.  Structural Equation Models , 2005 .

[5]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[6]  I. Moustaki,et al.  A one dimension latent trait model to infer attitude from nonresponse for nominal data , 2000 .

[7]  Gerhard Arminger,et al.  Mixtures of conditional mean- and covariance-structure models , 1999 .

[8]  Francesco Bartolucci,et al.  A class of multidimensional IRT models for testing unidimensionality and clustering items , 2007 .

[9]  José G. Dias,et al.  Model Selection for the Binary Latent Class Model: A Monte Carlo Simulation , 2006, Data Science and Classification.

[10]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[11]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[12]  Stan Lipovetsky,et al.  Generalized Latent Variable Modeling: Multilevel,Longitudinal, and Structural Equation Models , 2005, Technometrics.

[13]  Deniz Senturk-Doganaksoy,et al.  Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach , 2006, Technometrics.

[14]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[15]  Anton K. Formann Mixture analysis of multivariate categorical data with covariates and missing entries , 2007, Comput. Stat. Data Anal..

[16]  Jonald L. Pimentel,et al.  Item response theory modeling with nonignorable missing data , 2005 .

[17]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[18]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[19]  O. D. Duncan,et al.  Introduction to Structural Equation Models. , 1977 .

[20]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[21]  Scott L. Zeger,et al.  Latent Variable Regression for Multiple Discrete Outcomes , 1997 .

[22]  F. Krauss Latent Structure Analysis , 1980 .

[23]  Kamel Jedidi,et al.  STEMM: A General Finite Mixture Structural Equation Model , 1997 .

[24]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[25]  M. Reckase Multidimensional Item Response Theory , 2009 .

[26]  Matthias von Davier,et al.  A general diagnostic model applied to language testing data. , 2008, The British journal of mathematical and statistical psychology.

[27]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[28]  Peter J. Diggle,et al.  Informative dropout in longitudinal data analysis. , 1994 .

[29]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[30]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[31]  Colm O'Muircheartaigh,et al.  Symmetric pattern models: a latent variable approach to item non‐response in attitude scales , 1999 .

[32]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[33]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[34]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[35]  Yuhong Yang Can the Strengths of AIC and BIC Be Shared , 2005 .

[36]  Rebecca Holman,et al.  Modelling non-ignorable missing-data mechanisms with item response theory models. , 2005, The British journal of mathematical and statistical psychology.

[37]  Eric T. Bradlow,et al.  Item Response Theory Models Applied to Data Allowing Examinee Choice , 1998 .

[38]  Frederic M. Lord,et al.  Maximum likelihood estimation of item response parameters when some responses are omitted , 1983 .

[39]  Francesco Bartolucci,et al.  MultiLCIRT: An R package for multidimensional latent class item response models , 2012, Comput. Stat. Data Anal..

[40]  Ofer Harel,et al.  Partial and latent ignorability in missing-data problems , 2009 .

[41]  R. J. Mokken,et al.  Handbook of modern item response theory , 1997 .

[42]  M. Kenward,et al.  Informative dropout in longitudinal data analysis (with discussion) , 1994 .

[43]  P. Boeck,et al.  Explanatory item response models : a generalized linear and nonlinear approach , 2004 .

[44]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[45]  Martin Knott,et al.  Weighting for item non‐response in attitude scales by using latent variable models with covariates , 2000 .

[46]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[47]  Jinming Zhang,et al.  COMPARISON OF UNIDIMENSIONAL AND MULTIDIMENSIONAL APPROACHES TO IRT PARAMETER ESTIMATION , 2004 .

[48]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[49]  Francesco Bartolucci,et al.  A Class of Latent Marginal Models for Capture–Recapture Data With Continuous Covariates , 2006 .

[50]  A. Goldberger STRUCTURAL EQUATION METHODS IN THE SOCIAL SCIENCES , 1972 .

[51]  M. Davier,et al.  Modeling Nonignorable Missing Data with Item Response Theory (IRT). Research Report. ETS RR-10-11. , 2010 .

[52]  J. Vermunt,et al.  Latent Gold 4.0 User's Guide , 2005 .

[53]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .