Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus

The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.

[1]  B. Bush Leg reflexes from chordotonal organs in the crab, Carcinus maenas. , 1965, Comparative biochemistry and physiology.

[2]  U. Bässler [On the regulation of the position of the femur-tibial joint of the walking-stick insect Carausius morosus at rest and in motion]. , 1967, Kybernetik.

[3]  P. Usherwood,et al.  Structure and Physiology of a Chordotonal Organ in the Locust Leg , 1968 .

[4]  P. Usherwood,et al.  Tarsal Receptors and Leg Reflexes in the Locust and GRASSHOPPER , 1968 .

[5]  M. Cohen,et al.  Sensory and motor interaction in the locomotor reflexes of crabs. , 1969, The Journal of experimental biology.

[6]  K. Pearson,et al.  Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana. , 1970, The Journal of experimental biology.

[7]  P. Usherwood,et al.  Analysis of the Mechanical Responses of Metathoracic Extensor Tibiae Muscles of Free-Walking Locusts , 1970 .

[8]  K. Pearson Central Programming and Reflex Control of Walking in the Cockroach , 1972 .

[9]  U. Bässler Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia , 2004, Kybernetik.

[10]  D. Godden The motor innervation of the leg musculature and motor output during thanatosis in the stick insectCarausius morosus Br , 1972, Journal of comparative physiology.

[11]  W. H. Evoy,et al.  Nervous control of walking in the crab, Cardisoma guanhumi , 2004, Zeitschrift für vergleichende Physiologie.

[12]  Ulrich Bässler,et al.  Proprioreceptoren am Subcoxal-und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung , 1965, Kybernetik.

[13]  Zur Steuerung des Springens bei der Wanderheuschrecke Schistocerca gregariea , 2004, Kybernetik.

[14]  G. Wendler Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen , 1964, Zeitschrift für vergleichende Physiologie.

[15]  Ulrich Bässler Der „Kniesehnenreflex” bei Carausius morosus: Übergangsfunktion und Frequenzgang , 2004, Kybernetik.

[16]  F. Clarac,et al.  La marche latérale du crabe (Carcinus) , 1971, Zeitschrift für vergleichende Physiologie.

[17]  U. Bässler Zur Beeinflussung der Bewegungsweise eines Beines von Carausius morosus durch Amputation anderer Beine , 1972, Kybernetik.

[18]  Zum Verhalten des Krallenbeugersystems bei der Stabheuschrecke Carausius morosus Br. , 1969, Zeitschrift für vergleichende Physiologie.

[19]  F. Delcomyn Computer aided analysis of a locomotor leg reflex in the cockroach Periplaneta americana , 1971, Zeitschrift für vergleichende Physiologie.

[20]  W. H. Evoy,et al.  Nervous control of walking in the crab, Cardisoma guanhumi , 1972, Zeitschrift für vergleichende Physiologie.

[21]  Photoinhibition of arousal in the stick insect Carausius , 1972, Zeitschrift für vergleichende Physiologie.