Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers

[1]  Jiaying Wu,et al.  A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells , 2021, Advanced materials.

[2]  Jianqi Zhang,et al.  Single‐Junction Organic Photovoltaic Cell with 19% Efficiency , 2021, Advanced materials.

[3]  Q. Peng,et al.  18.77% Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer. , 2021, Angewandte Chemie.

[4]  Junhua Song,et al.  A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells , 2021, Energy & Environmental Science.

[5]  X. Hao,et al.  A Well‐Mixed Phase Formed by Two Compatible Non‐Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6% , 2021, Advanced materials.

[6]  Yanming Sun,et al.  High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy , 2021, Matter.

[7]  Haijun Fan,et al.  Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two‐in‐One Strategy , 2021, Advanced materials.

[8]  Yuan Zhang,et al.  Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells , 2021, Nature Energy.

[9]  Hang Yin,et al.  One-micron-thick organic indoor light harvesters with low photocurrent loss and fill factors over 67% , 2021 .

[10]  Xuncheng Liu,et al.  Binary non-fullerene-based polymer solar cells with a 430 nm thick active layer showing 15.39% efficiency and 73.38% fill factor , 2021 .

[11]  C. Brabec,et al.  Recent progress in thick‐film organic photovoltaic devices: Materials, devices, and processing , 2021, SusMat.

[12]  Sung‐Ho Jin,et al.  Nonhalogenated Solvent‐Processed Thick‐Film Ternary Nonfullerene Organic Solar Cells with Power Conversion Efficiency >13% Enabled by a New Wide‐Bandgap Polymer , 2021 .

[13]  Hongzheng Chen,et al.  Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18% , 2021, Advanced materials.

[14]  Xiangwei Zhu,et al.  Progress and prospects of thick-film organic solar cells , 2021 .

[15]  Renqiang Yang,et al.  Subtle Side Chain Triggers Unexpected Two-Channel Charge Transport Property Enabling 80% Fill Factors and Efficient Thick-Film Organic Photovoltaics , 2021, Innovation.

[16]  A. Jen,et al.  Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length , 2021, Nature Communications.

[17]  Bryon W. Larson,et al.  Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies , 2020, Nature communications.

[18]  K. Leo,et al.  Organic Solar Cells—The Path to Commercial Success , 2020, Advanced Energy Materials.

[19]  Vincent M. Le Corre,et al.  Long-range exciton diffusion in molecular non-fullerene acceptors , 2020, Nature Communications.

[20]  C. Brabec,et al.  The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets , 2020, Nature Energy.

[21]  Zhigang Zang,et al.  Over 16% efficiency from thick-film organic solar cells. , 2020, Science bulletin.

[22]  Yanming Sun,et al.  High‐Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness , 2020 .

[23]  I. Samuel,et al.  Long-range exciton diffusion in non-fullerene acceptors and coarse bulk heterojunctions enable highly efficient organic photovoltaics , 2020, Journal of Materials Chemistry A.

[24]  I. Samuel,et al.  Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics , 2020 .

[25]  Zhiguo Zhang,et al.  Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. , 2020, Journal of the American Chemical Society.

[26]  Yanming Sun,et al.  Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells , 2020, Nature Communications.

[27]  Wenkai Zhong,et al.  14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor , 2020 .

[28]  Yanming Sun,et al.  Fibril Network Strategy Enables High‐Performance Semitransparent Organic Solar Cells , 2020, Advanced Functional Materials.

[29]  Xuncheng Liu,et al.  Significantly enhanced electron transport of a nonfullerene acceptor in a blend film with a high hole mobility polymer of high molecular weight: thick-film nonfullerene polymer solar cells showing a high fill factor , 2020 .

[30]  H. Yao,et al.  High Efficiency Non-fullerene Organic Solar Cell Enabled by 1000-nm-thick Active layers with a Low Trap-state Density. , 2020, ACS applied materials & interfaces.

[31]  Fujun Zhang,et al.  Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers , 2020 .

[32]  Hongzheng Chen,et al.  Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model , 2020 .

[33]  Shancen Zhao,et al.  Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment , 2020, Nature Communications.

[34]  Fujun Zhang,et al.  Thick‐Film Organic Solar Cells Achieving over 11% Efficiency and Nearly 70% Fill Factor at Thickness over 400 nm , 2020, Advanced Functional Materials.

[35]  Jianhui Hou,et al.  A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency , 2020, Science China Chemistry.

[36]  Yongsheng Chen,et al.  High Performance Thick‐Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm , 2019, Advanced Energy Materials.

[37]  Fujun Zhang,et al.  Two Well-Compatible Acceptors with Efficient Energy Transfer Enable Ternary Organic Photovoltaics Exhibiting a 13.36% Efficiency. , 2019, Small.

[38]  Yanming Sun,et al.  Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells , 2019, Science China Chemistry.

[39]  Jacek Ulanski,et al.  Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core , 2019, Joule.

[40]  A. Barker,et al.  High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films. , 2019, Journal of the American Chemical Society.

[41]  I. Samuel,et al.  Large Crystalline Domains and an Enhanced Exciton Diffusion Length Enable Efficient Organic Solar Cells , 2019, Chemistry of Materials.

[42]  Zhixiang Wei,et al.  Correlations between Performance of Organic Solar Cells and Film‐Depth‐Dependent Optical and Electronic Variations , 2019, Advanced Optical Materials.

[43]  Feng Liu,et al.  High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors , 2018, Nature Energy.

[44]  He Yan,et al.  Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors , 2018, Nature Energy.

[45]  Olle Inganäs,et al.  Organic Photovoltaics over Three Decades , 2018, Advanced materials.

[46]  Yongfang Li,et al.  Side‐Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm , 2018, Advanced Energy Materials.

[47]  Wenkai Zhong,et al.  Low temperature processed high-performance thick film ternary polymer solar cell with enhanced stability , 2018, Nano Energy.

[48]  Yang Yang,et al.  Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond , 2018, Joule.

[49]  K. Vandewal,et al.  How to determine optical gaps and voltage losses in organic photovoltaic materials , 2018 .

[50]  Yongfang Li,et al.  Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency , 2018, Science China Chemistry.

[51]  Xiao-Fang Jiang,et al.  Thick Film Polymer Solar Cells Based on Naphtho[1,2‐c:5,6‐c]bis[1,2,5]thiadiazole Conjugated Polymers with Efficiency over 11% , 2017 .

[52]  Xuncheng Liu,et al.  Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells , 2017 .

[53]  Yang Yang,et al.  Low-bandgap conjugated polymers enabling solution-processable tandem solar cells , 2017 .

[54]  Yongfang Li,et al.  High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area , 2017, Advanced materials.

[55]  Tao Wang,et al.  Conjugated‐Polymer Blends for Organic Photovoltaics: Rational Control of Vertical Stratification for High Performance , 2017, Advanced materials.

[56]  Xiao-Fang Jiang,et al.  High-Performance Ternary Organic Solar Cell Enabled by a Thick Active Layer Containing a Liquid Crystalline Small Molecule Donor. , 2017, Journal of the American Chemical Society.

[57]  Jisoo Shin,et al.  Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency , 2017 .

[58]  Ling Zhou,et al.  Film‐Depth‐Dependent Light Absorption and Charge Transport for Polymer Electronics: A Case Study on Semiconductor/Insulator Blends by Plasma Etching , 2016 .

[59]  M. Kim,et al.  Critical factors governing vertical phase separation in polymer–PCBM blend films for organic solar cells , 2016 .

[60]  Yuguang Ma,et al.  Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer , 2016, Advanced materials.

[61]  H. Ohkita,et al.  Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency. , 2015, The journal of physical chemistry letters.

[62]  G. Fredrickson,et al.  Energy Transfer Directly to Bilayer Interfaces to Improve Exciton Collection in Organic Photovoltaics , 2015 .

[63]  P. Blom,et al.  Exciton diffusion in organic semiconductors , 2015 .

[64]  Daoben Zhu,et al.  An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells , 2015, Advanced materials.

[65]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[66]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[67]  Jisoo Shin,et al.  Dependence of Exciton Diffusion Length on Crystalline Order in Conjugated Polymers , 2014 .

[68]  Thomas Kirchartz,et al.  Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge. , 2012, The journal of physical chemistry letters.

[69]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[70]  R. Friend,et al.  Surface-directed spinodal decomposition in poly[3-hexylthiophene] and C₆₁-butyric acid methyl ester blends. , 2011, ACS nano.

[71]  S. Forrest,et al.  Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching , 2009 .

[72]  P. Blom,et al.  Combined optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells , 2008 .

[73]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[74]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[75]  Valentin D. Mihailetchi,et al.  Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells , 2006 .

[76]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[77]  Rudolph A. Marcus,et al.  Chemical and Electrochemical Electron-Transfer Theory , 1964 .