Predicting absolute ligand binding free energies to a simple model site.

[1]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[2]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[3]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[4]  Brian K Shoichet,et al.  Testing a flexible-receptor docking algorithm in a model binding site. , 2004, Journal of molecular biology.

[5]  B. Matthews,et al.  Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. , 1991, Biochemistry.

[6]  C. Bayly,et al.  Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method , 2000, J. Comput. Chem..

[7]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[8]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[9]  Thomas Steinbrecher,et al.  A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase. , 2006, Journal of medicinal chemistry.

[10]  Lu Wang,et al.  Inclusion of Loss of Translational and Rotational Freedom in Theoretical Estimates of Free Energies of Binding. Application to a Complex of Benzene and Mutant T4 Lysozyme , 1997 .

[11]  Donald G. Truhlar,et al.  New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions , 1998 .

[12]  P. Kollman,et al.  Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate−DNA Helices , 1998 .

[13]  J Hermans,et al.  Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. , 2000, Journal of molecular biology.

[14]  V V Plotnikov,et al.  A new ultrasensitive scanning calorimeter. , 1997, Analytical biochemistry.

[15]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[16]  Michael R. Shirts,et al.  Direct calculation of the binding free energies of FKBP ligands. , 2005, The Journal of chemical physics.

[17]  David L. Mobley,et al.  Chapter 4 Alchemical Free Energy Calculations: Ready for Prime Time? , 2007 .

[18]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[19]  D. Kofke Free energy methods in molecular simulation , 2005 .

[20]  J Andrew McCammon,et al.  Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain. , 2006, Journal of the American Chemical Society.

[21]  B. Roux,et al.  Calculation of absolute protein-ligand binding free energy from computer simulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[23]  M. Jacobson,et al.  Molecular mechanics methods for predicting protein-ligand binding. , 2006, Physical chemistry chemical physics : PCCP.

[24]  David A Pearlman,et al.  Evaluating the molecular mechanics poisson-boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. , 2005, Journal of medicinal chemistry.

[25]  I. Kuntz,et al.  Ligand solvation in molecular docking , 1999, Proteins.

[26]  Wilfred F van Gunsteren,et al.  Calculation of the Redox Potential of the Protein Azurin and Some Mutants , 2005, Chembiochem : a European journal of chemical biology.

[27]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[28]  Chris Oostenbrink,et al.  Computational study of ground‐state chiral induction in small peptides: Comparison of the relative stability of selected amino acid dimers and oligomers in homochiral and heterochiral combinations , 2006, J. Comput. Chem..

[29]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[30]  B. Roux,et al.  Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. , 2006, Biophysical journal.

[31]  David L Mobley,et al.  The Confine-and-Release Method: Obtaining Correct Binding Free Energies in the Presence of Protein Conformational Change. , 2007, Journal of chemical theory and computation.

[32]  Mark A Olson,et al.  Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. , 2006, Biophysical journal.

[33]  Eric J. Sorin,et al.  Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. , 2005, Biophysical journal.

[34]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[35]  B. Matthews,et al.  Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. , 1995, Biochemistry.

[36]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[37]  Michael R. Shirts,et al.  Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. , 2005, The Journal of chemical physics.

[38]  David L Mobley,et al.  Accurate and efficient corrections for missing dispersion interactions in molecular simulations. , 2007, The journal of physical chemistry. B.

[39]  Benoit Roux,et al.  On the Importance of Atomic Fluctuations, Protein Flexibility, and Solvent in Ion Permeation , 2004, The Journal of general physiology.

[40]  Régis Pomès,et al.  Enhancing the accuracy, the efficiency and the scope of free energy simulations. , 2005, Current opinion in structural biology.

[41]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.

[42]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[43]  B. Shoichet,et al.  Decoys for docking. , 2005, Journal of medicinal chemistry.

[44]  Jeremy C. Smith,et al.  Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[45]  Benoît Roux,et al.  Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant. , 2006, Journal of chemical theory and computation.

[46]  W Bruce Turnbull,et al.  On the value of c: can low affinity systems be studied by isothermal titration calorimetry? , 2003, Journal of the American Chemical Society.

[47]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[48]  K. Dill,et al.  On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. , 2006, The Journal of chemical physics.

[49]  P. Kollman,et al.  Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. , 2000, Journal of medicinal chemistry.

[50]  B. Matthews,et al.  Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. , 1995, Biochemistry.

[51]  Stefan Boresch,et al.  Absolute Binding Free Energies: A Quantitative Approach for Their Calculation , 2003 .

[52]  P. Kollman Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules , 1996 .

[53]  B. Matthews,et al.  A model binding site for testing scoring functions in molecular docking. , 2002, Journal of molecular biology.

[54]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[55]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[56]  B. Matthews,et al.  Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. , 1993, Journal of molecular biology.

[57]  B. Matthews,et al.  Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. , 1992, Science.