Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence
暂无分享,去创建一个
[1] H. W. Turnbull,et al. An Introduction to the Theory of Canonical Matrices , 1932, Nature.
[2] R. C. Thompson,et al. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .
[3] Leiba Rodman,et al. Stable Invariant Lagrangian Subspaces: Factorization of Symmetric Rational Matrix Functions and Other Applications , 1990 .
[4] V. Mehrmann,et al. Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .
[5] F. Gantmacher,et al. Applications of the theory of matrices , 1960 .
[6] Leiba Rodman,et al. Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..
[7] P. Lancaster,et al. Invariant subspaces of matrices with applications , 1986 .
[8] John Williamson. The Equivalence of Non-Singular Pencils of Hermitian Matrices in an Arbitrary Field , 1935 .
[9] N. Burgoyne,et al. Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues , 1974 .
[10] Richard A. Silverman,et al. An introduction to the theory of linear spaces , 1963 .
[11] Mark A. Shayman,et al. Geometry of the Algebraic Riccati Equation, Part II , 1983 .
[12] J. Rubin,et al. Direct complements of invariant lagrangian subspaces and minimal factorizations of skew-symmetric rational matrix functions , 1993 .
[13] K. Venkatachaliengar. Pairs of symmetric and skew matrices in an arbitrary field—I , 1945 .
[14] P. Lancaster,et al. Invariant Neutral Subspaces for Symmetric and Skew Real Matrix Pairs , 1994, Canadian Journal of Mathematics.
[15] J. Williamson. The Conjunctive Equivalence of Pencils of Hermitian and Anti-Hermitian Matrices , 1937 .
[16] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[17] T. C. Brown,et al. Foundations of Linear Algebra. , 1968 .
[18] Jiří Patera,et al. Normal forms of elements of classical real and complex Lie and Jordan algebras , 1983 .
[19] M. H. Ingraham,et al. The equivalence of pairs of Hermitian matrices , 1935 .
[20] Leiba Rodman,et al. Matrices and indefinite scalar products , 1983 .
[21] Loo-Keng Hua,et al. On the Theory of Automorphic Functions of a Matrix Variable, II-The Classification of Hypercircles Under the Symplectic Group , 1944 .
[22] H. W. Turnbull. On the Equivalence of Pencils of Hermitian Forms , 1935 .
[23] Christian Mehl,et al. Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils , 1999, SIAM J. Matrix Anal. Appl..
[24] J. Dieudonné,et al. Sur la réduction canonique des couples de matrices , 1946 .
[25] G. Richard Trott. On the Canonical Form of a Non-Singular Pencil of Hermitian Matrices , 1934 .
[26] K. Meyer,et al. Canonical forms for symplectic and Hamiltonian matrices , 1974 .
[27] W. Greub. Linear Algebra , 1981 .
[28] Wilhelm Kltngenberg. Paare symmetrischer und alternierender formen zweiten grades , 1954 .
[29] Volker Mehrmann,et al. Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .
[30] P. Lancaster,et al. Existence and uniqueness theorems for the algebraic Riccati equation , 1980 .
[31] Leiba Rodman,et al. Stability of Invariant Lagrangian Subspaces II , 1989 .
[32] R. Coleman. Some Properties of Elementary Hamiltonian Matrices , 2002 .
[33] Martin Kummer,et al. A Unified Approach to Linear and Nonlinear Normal Forms for Hamiltonian Systems , 1999, J. Symb. Comput..
[34] Realization and Factorization for Rational Matrix Functions with Symmetries , 1990 .
[35] R. C. Thompson,et al. Pencils of complex and real symmetric and skew matrices , 1991 .
[36] L. Rodman,et al. A class of robustness problems in matrix analysis , 2002 .
[37] Vladimir V. Sergeichuk,et al. Canonical matrices for linear matrix problems , 2000, 0709.2485.
[38] A. Bryuno. The normal form of a Hamiltonian system , 1988 .
[39] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[40] V. Mehrmann,et al. Canonical forms for doubly structured matrices and pencils , 2000 .
[41] John Williamson. Note on the equivalence of nonsingular pencils of Hermitian matrices , 1945 .
[42] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[43] L. E. Faibusovich. Algebraic Riccati equation and symplectic algebra , 1986 .
[44] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[45] C. C. Macduffee,et al. The Theory of Matrices , 1933 .
[46] F. R. Gantmakher. The Theory of Matrices , 1984 .
[47] P. Fuhrmann. On Hamiltonian rational transfer functions , 1984 .
[48] Leiba Rodman,et al. Minimal symmetric factorizations of symmetric real and complex rational matrix functions , 1995 .
[49] C. Loan,et al. A Schur decomposition for Hamiltonian matrices , 1981 .
[50] David S. Watkins,et al. On Hamiltonian and symplectic Lanczos processes , 2004 .
[51] J. Williamson. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .
[52] Niloufer Mackey,et al. Hamiltonian square roots of skew-Hamiltonian matrices , 1999 .
[53] Peter Benner,et al. A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .